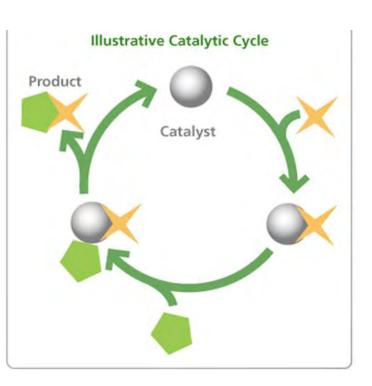
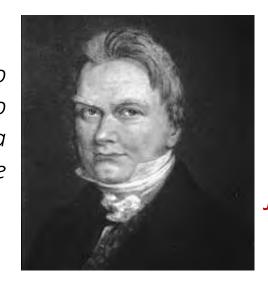
Nuovi Catalizzatori per la sostenibilità

Silvia Bordiga Dipartimento di Chimica Università di Torino, NIS e INSTM


L'intuizione di Berzelius e il termine "catalisi"

Reagenti catalisi Prodotti

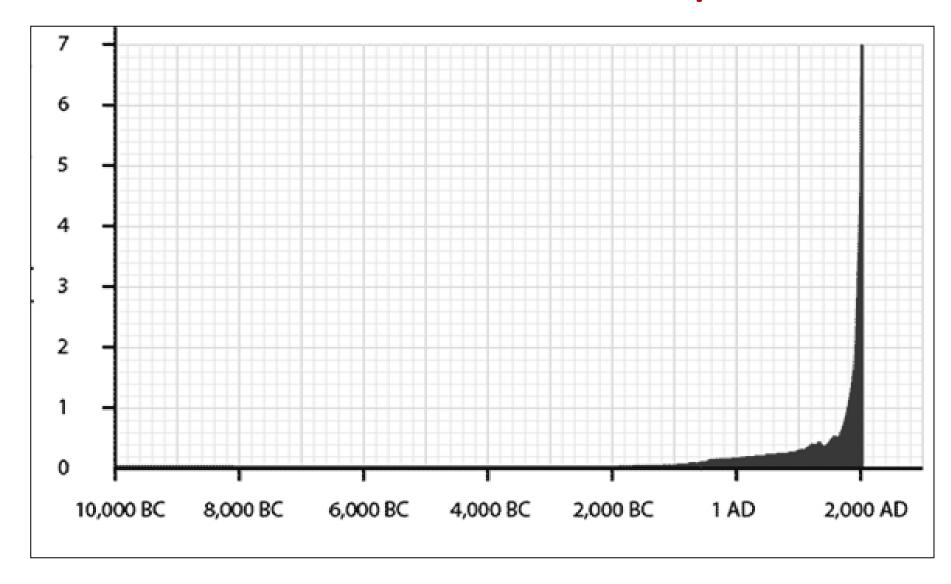
cammino di reazione


La stragrande maggioranza dei prodotti dell'industria chimica e non solo, deriva da processi che fanno uso di catalizzatori. Fu Berzelius il primo ad intuire l'esistenza di sostanze in grado di influire sulla velocità di certe reazioni chimiche.

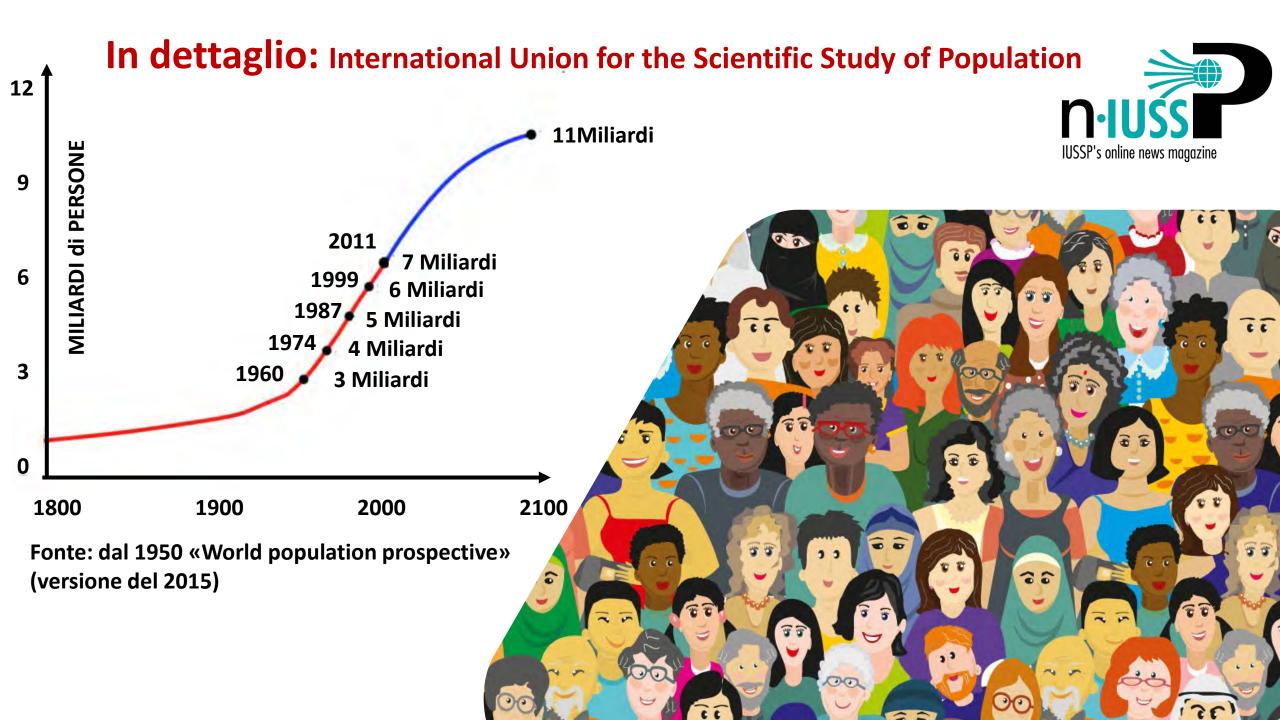
Nel 1836 Berzelius ideò il termine catalisi combinando due parole Greche κατά (giù) e λύσις (sciogliere)

Secondo **Berzelius** (chimico Svedese) il *catalizzatore è una sostanza che permette l'avvio di una reazione senza prenderne parte e quindi senza consumarsi....*

"[...] the catalytic power seems actually to consist in the fact that substances are able to **awake affinities**, which are asleep at a particular temperature, by their mere presence and not by their own affinity."

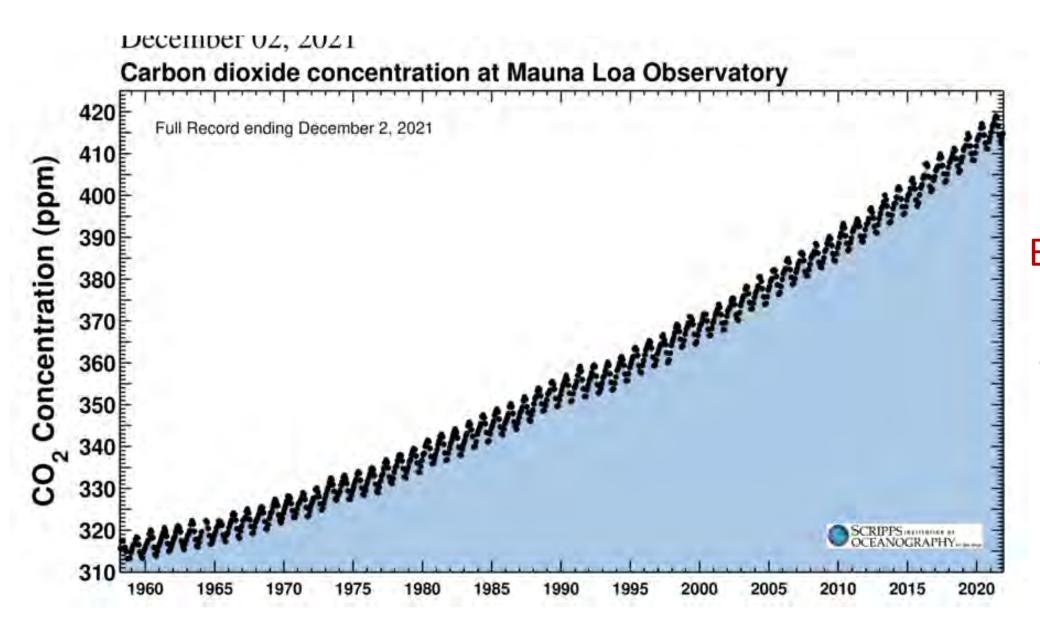

J. J. Berzelius

A settembre 2015 i governi di 193 Paesi membri dell'ONU, hanno trovato un accordo su quali siano gli obbiettivi comuni, da raggiungere entro il 2030, per garantire a tutti un futuro sostenibile.

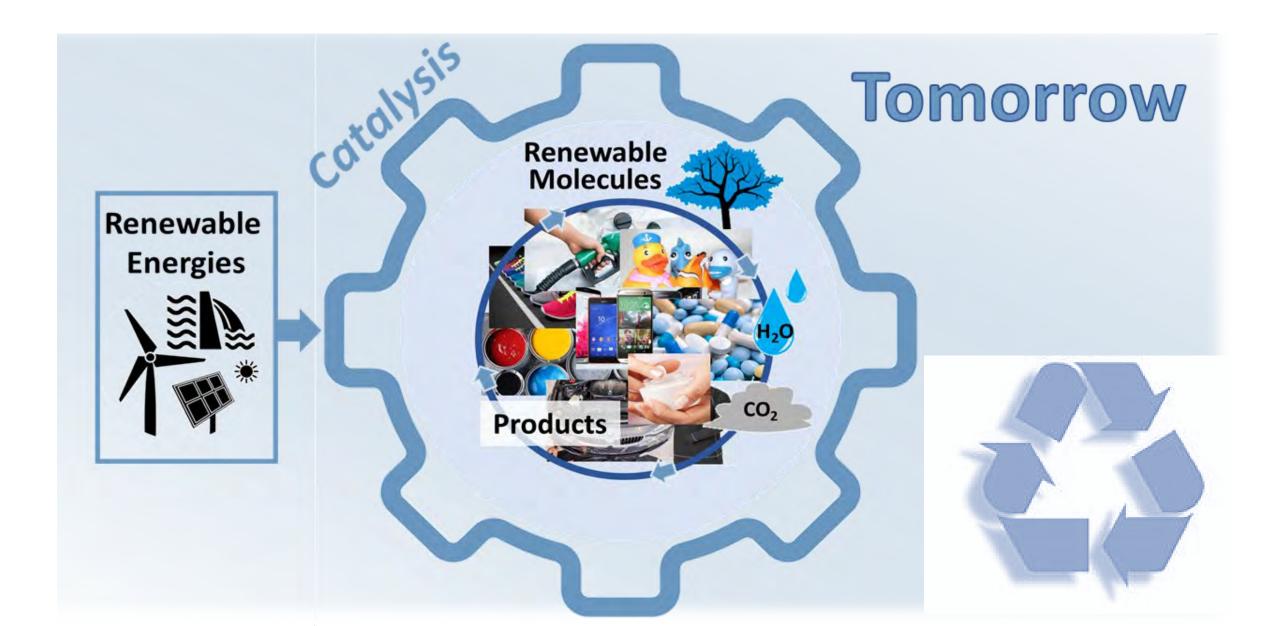


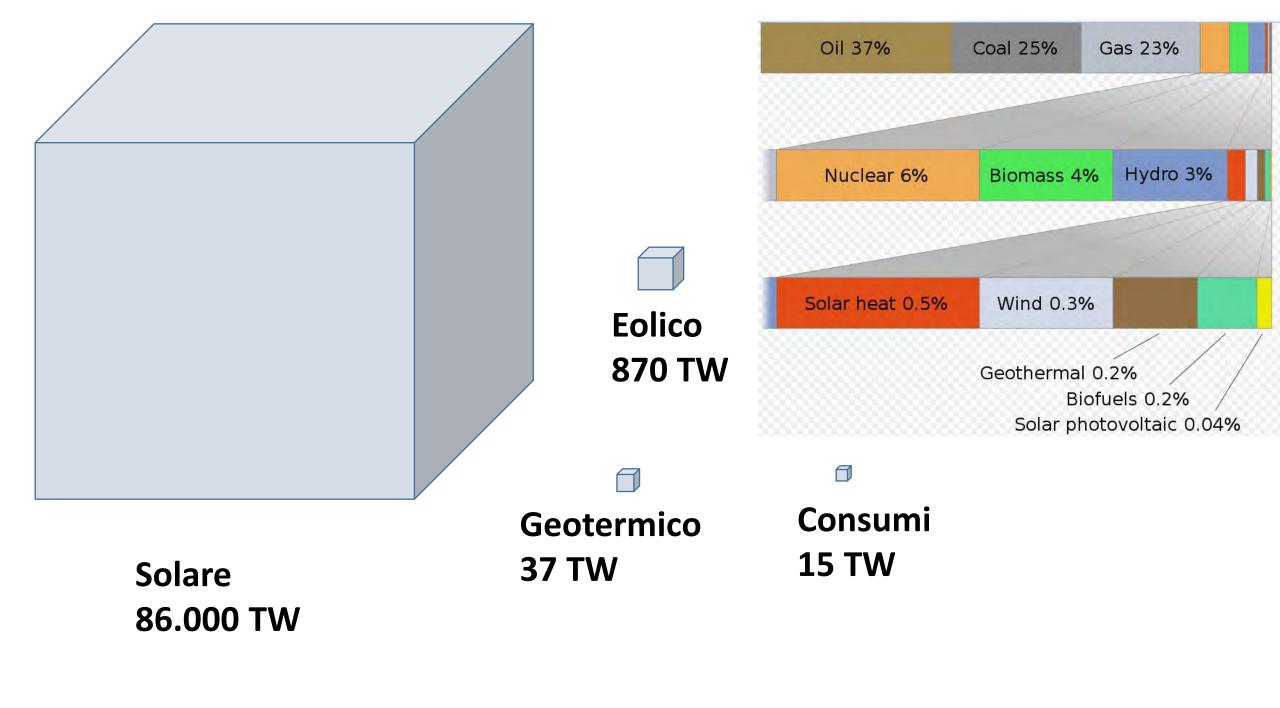
La sostenibilità non è solo una questione ambientale Si afferma una visione globale che considera aspetti sociali ed economici

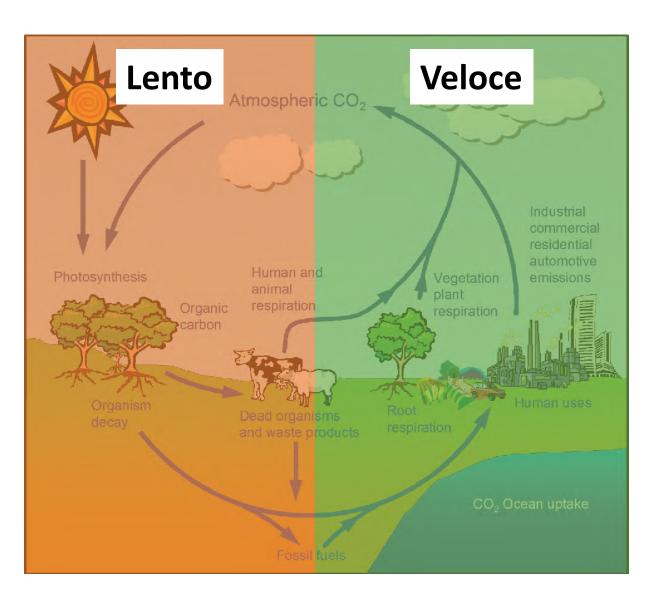
La popolazione aumenta per numerosità ed esigenze, mentre la terra si impoverisce


Siamo in un periodo speciale

La catena produttiva attuale

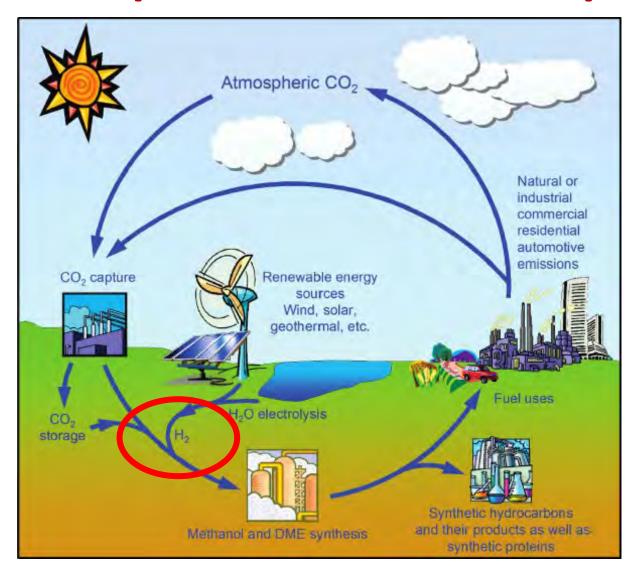



Inoltre la CO₂ cresce oltre misura.


Bisogna intervenire al più presto

Attraveso una catena produttiva circolare

Il ciclo naturale del Carbonio



Prendiamo spunto dalla natura che attua processi circolari.

Ma hanno un difetto..... Sono lenti e noi abbiamo fretta

Facciamo come dice **Leonardo**"Dove la Natura finisce di
produrre le sue specie, comincia
l'uomo, in armonia con le leggi
della Natura, a creare una
infinità di altre specie".

... una possibile via di scampo

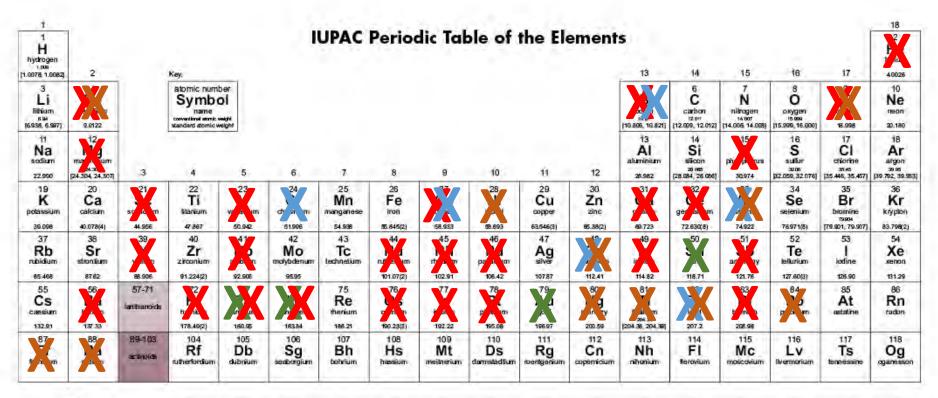
Sviluppare catalizzatori che permettano di accelerare la parte lenta del ciclo del carbonio

Una direzione di sviluppo:

- Produrre H₂ sostenibile
- Usare catalizzatori che si basino su elementi «non critici»
- Sviluppare processi che operino a temperature e pressioni moderate

1 H hydrogen					Ì	UPAC	Perio	dic Tal	ole of	the Ele	ement						18 2 He
1.0078 1.0082	2		Key.	her								13	14	15	16	17	46626
Li filhium 634 6438, 6497]	Be beryllium 9,0122		Symbol name converting storic standard storics	ol 								B boron (10.805, 10.821)	C carbon (12.000, 12.012)	N nilrogen 14.007 (14.005 14.008)	O cxygen is see [15.000, 16.000]	F Duorine 18.998	Ne neon 20.180
Na sodium 22.990	12 Mg magnessum 24.305 [24.304, 24.307]	3	4	5	6	7.	8	9	10	û	12	13 Al aluminium 24.582	14 Si silicon 20 005 (28.084, 26.086)	15 P phosphorus 30,974	16 S suffur 3200 32.059,32.076]	17 CI criorite 35.45 [35.446, 35.457]	18 Ar argon 39 90 (39 792, 39 963
19 K potassium 30.008	Ca calcium	SC scandium	22 Ti \$2ansum 47.867	Variadium	Cr chronium	25 Mn manganese 54,938	26 Fe iron 55.845(2)	27 Co cobalt	28 Ni nickel	29 Cu copper 63,546(3)	30 Zn zinc es.38(2)	Ga gallum ea723	32 Ge germanium 72.63(28)	As arsenic	34 Se selenium	35 Br bromine 179.901, 79.9071	36 Kr krypton 83.798(2)
37 Rb nbidium 85.468	38 Sr strontium 87.62	39 Y yitifum 88.906	40 Zr zirconium 91.224(2)	A1 Nb nicebium	Mo molybdenum 9595	43 TC technetium	Ru nutherium 101.07(2)	45 Rh rhedium	46 Pd paladium	Ag silver	48 Cd cadmium	49 In indium	50 Sn £n	51 Sb antmony	52 Te tellurium 127.60(3)	53 iodine 125.90	54 Xe xenon 131.29
55 Cs caesium	56 Ba barium	57-71 lantinaroids	72 Hf halhium 178.49(2)	73 Ta tantalum 180.95	74 W lungsien 18384	75 Re therium 186.21	76 OS csmium 100.23(3)	77 r ridium 192 22	78 Pt platnum	79 Au gold 19697	Hg mercury 200.59	81 TI thallium 204.36 (204.36, 204.39)	82 Pb lead 207.2	83 Bi bismuth	Po polonium	85 At astatine	86 Rn radon
87 Fr tancium	Ra Radium	89-103 activida	104 Rf rutherfordium	Db dubrium	106 Sg seasorgium	107 Bh tehrium	108 Hs hassum	109 Mt meinerium	110 Ds damistadium	Rg mentgenium	112 Cn copernicium	113 Nh nhonium	FI FI teroyium	115 Mc molcovium	116 Lv Ivernorium	117 TS temessne	Og oganesson

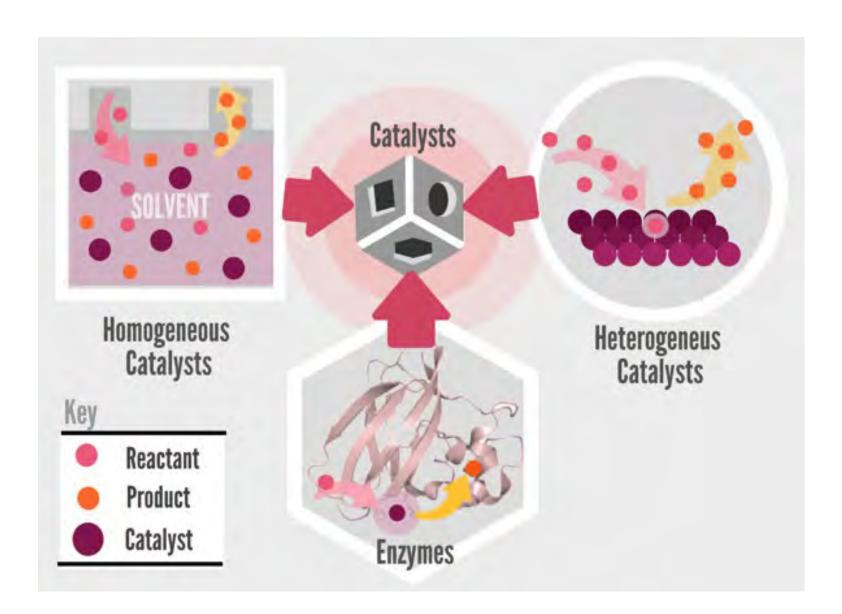
PURE AND APPLIED CHEMISTRY


57 La isritianum	58 Ce cerium 40.12	59 Pr prassodymam 146.91	Nd necelytrium	Pm prometrium	62 Sm samarium 150,28(2)	63 Eu europum 15136	64 Gd gadainium	7b Lerbium	B6 Dy dyspicisium	67 Ho namum	Er eroium	Tm Inusum	70 Yb ysterthum	71 Lu Meturi 17497
AC actinium	Th tronum	Pa ordadium zanos	92 U amilyn 286 03	Np neglatur	Pu Pu glutanium	95 Am american	Gm consen	Bk percelun	Cf cuttomian	99 Es enderrum	Fm Sumum	Md mendemount	No nomin	Lr Lr lawrencam

For notes and updates to this table, see www.iupac.org. This version is dated 1 December 2018. Copyright © 2018 IUPAC, the International Union of Pure and Applied Chemistry.

United Nations International Year
Educational, Scientific and of the Periodic Table
Cultural Organization of Chamical Elements

57 jury 4 m	58 140.12	59 prast di vaim 146.51	60 ner y Sum 144-24	pro A sum	©2 1 say A vimi 150.38(2)	63 ev A Ti	64 gar 1 \m	65 A 101 108.91	dy A Sum	67 9 a m 18493	68 7 7 7 7 7 7	7 / 1 / m 164.55	70 0 4 Yum	71 lunus 17497
AC Actinium	Th tronum	Pa ordectrom	972 U Jamilyn 206 03	Np negladan	Pu Pu olutenium	95 Am avertoom	Cm consur	D7 Bk Delkelium	Cf outbroken	ES ensionum	Fm Sumular	Md mend com	No nombri	Lr Lr lawercam

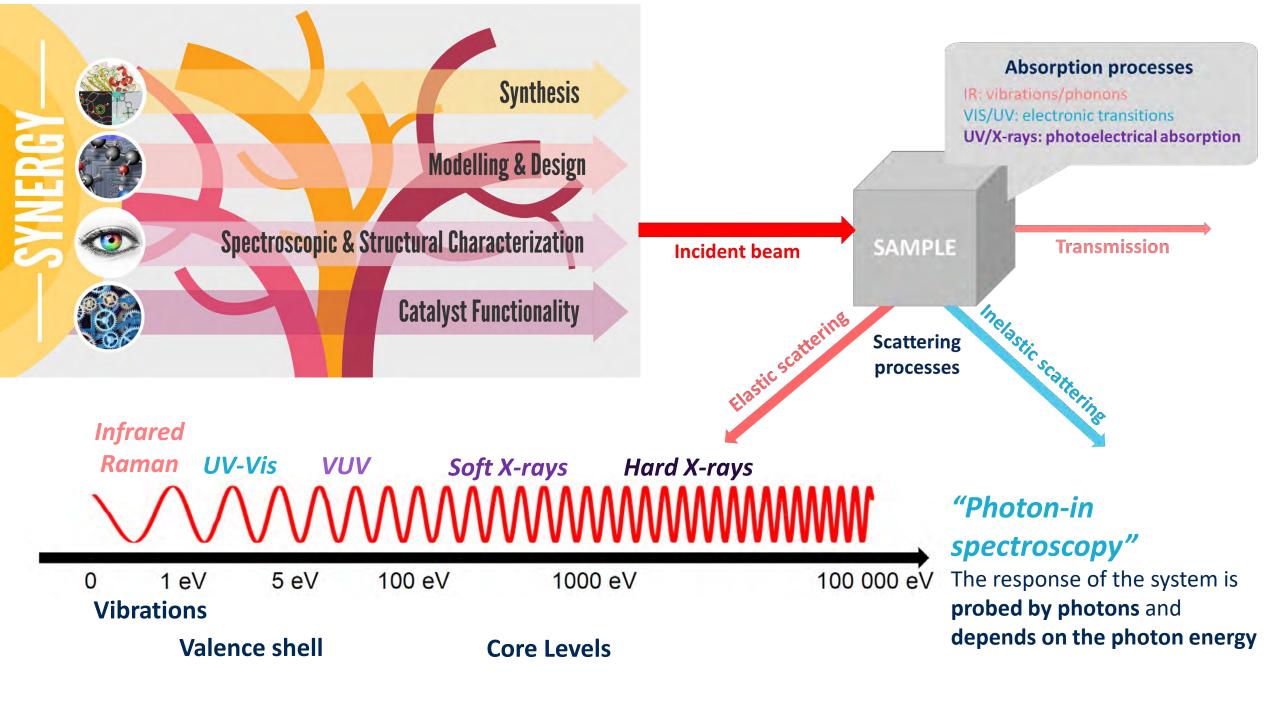

For notes and updates to this table, see www.iupac.org. This version is dated 1 December 2018. Copyright @ 2018 IUPAC, the International Union of Pure and Applied Chemistry.

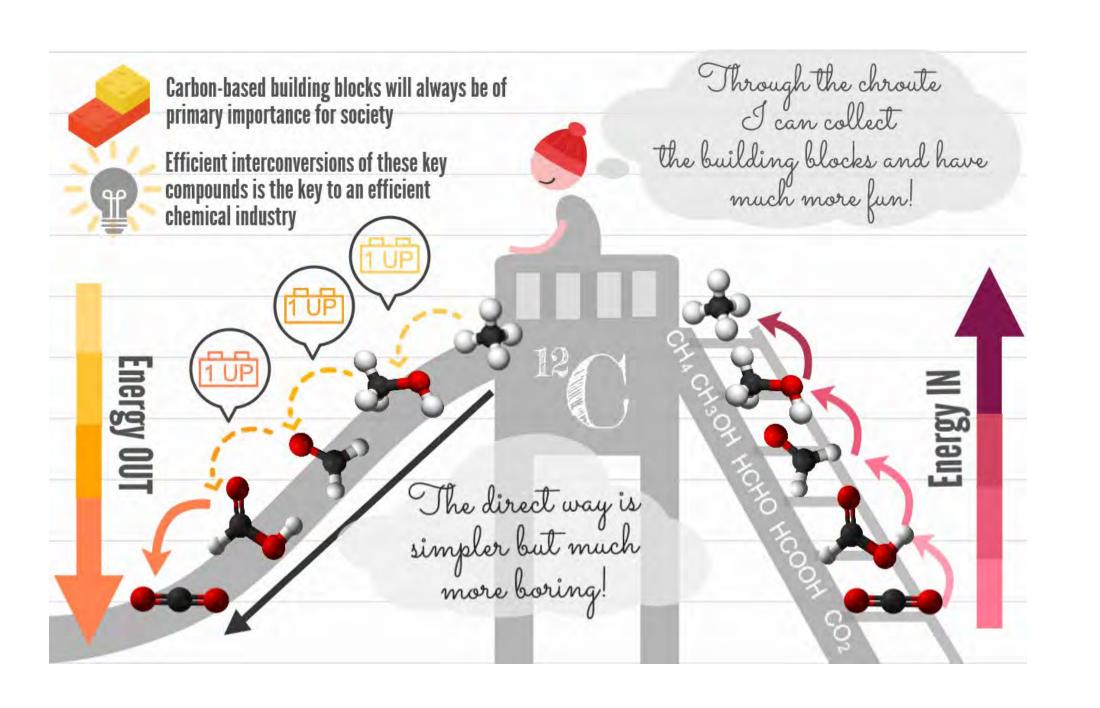
Il fantastico mondo dei catalizzatori

Attività. Possibilmente valutata come TON. Quantità di specie prodotte per il numero di specie attive.

Selettività. Quantità del prodotto voluto rispetto al totale dei prodotti

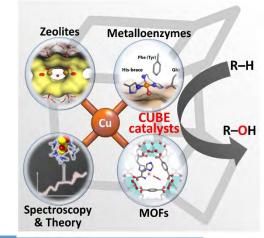
Economia atomica


(massa molare del prodotto desiderato / massa molare di tutti i reagenti) × 100%


Economia energetica

Pressione e Temperatura della reazione.

Tempo di vita del catalizzatore

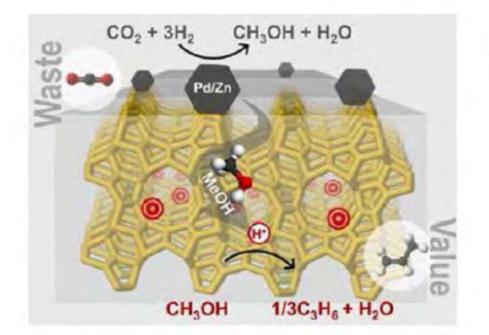

Valutazione dei tempi di disattivazione, possibilità e costi di effettuare una rigenerazione.

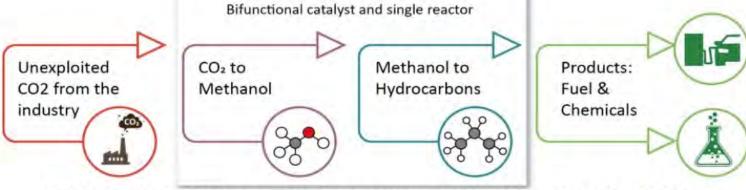
Unravelling the secrets of Cu-based catalysts for C-H activation (CUBE)

Catalizzatori	Cu-enzima - pMMO	Di sintesi - Cu-zeolite	Requisiti per l'industria		
Velocità di conversione del Metano	∅ 16 min ⁻¹	Ø 0.0005 min⁻¹	1 min ⁻¹		
Selettività in metanolo Insieme CH ₄ /O ₂		⊗ < 10%			
 ■ A step: prima O₂ e poi CH₄ 	100%	ॐ > 90 %	70-100 %		
Stabilità	⊗ fragile		> 10.000		

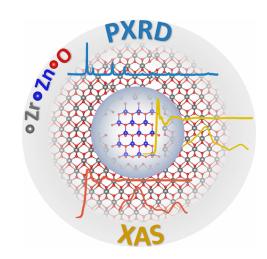
La visione di CUBE

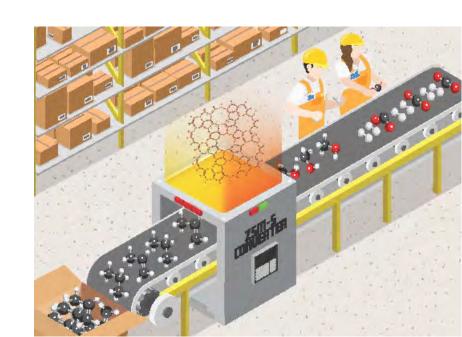
Capire come razionalmente si può progettare e realizzare un catalizzatore a base di «Cu» che attivi il legame C-H essendo, selettivo, attivo e stabile

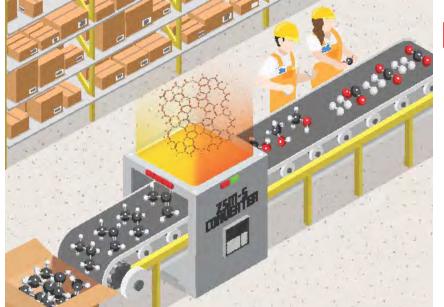

Q1: Quale è la specie Cu-O_{xo} attiva?
È unica in tutti i sistemi catalitici?
Contiene uno o più atomi di "Cu"?


Q2: Quale è l'influenza della prima sfera di coordinazione del centro attivo a base di "Cu", nell'attivazione dell' ossidante ?

Q3 Quale è il meccanismo di attivazione C-H e come agiscono i centri catalitici a base di "Cu" monomerici e dimerici? **Q4:** In che modo influisce la seconda sfera di coordinazione delle specie attive e quale è l'effetto di confinamento ?

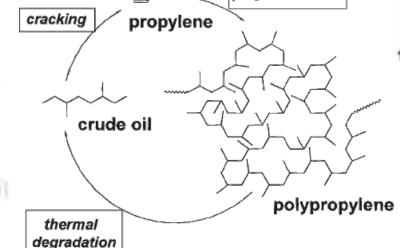





Efficient CO2 conversion over multisite Zeolite-Metal nanocatalysts to fuels and OlefinS

Pierfrancesco Ticali et al., *Catal. Sci. Technol.* 2021,11, 1249-1268

Abbiamo sviluppato un catalizzatore a base di **ZrO₂ e ZnO** (no leghe PdZn). Una volta che si ottiene CH₃OH, il secondo catalizzatore (zeolite) lo converte in propilene.


Etilene e propilene sono i tra gli ingredienti più usati per fare le materie plastiche

(>400°C)

catalytic polymerization

Come ha dichiarato Giorgio Parisi: «dobbiamo valutare, insieme al PIL, anche di quanto impattiamo sull'ambiente»

Non è il possesso naturale delle materie prime che basta a dare la ricchezza, come non è il difetto delle stesse materie prime che produce la povertà: le uniche vere fonti capaci di dare ricchezze durature e di distribuirle nel mondo, annullandone le povertà, sono i commerci e gli scambi onesti di materie prime e di prodotti finiti, le industrie che consumano e che trasformano, i cervelli e le braccia che operano, gli uomini che fraternizzano e che collaborano.

MARIO GIACOMO LEVI, L'industria chimica italiana e le possibilità del suo avvenire, in "La chimica e l'industria", Milano, novembre-dicembre 1945, anno XXVII, nn. 11-12, pp. 189-195

R. SCUOLA SUPERIORE DI CHIMICA INDUSTRIALE
annessa alla R. Università ed alla R. Scuola d'Applicazione per gli Ingegneri
DI BOLOGNA

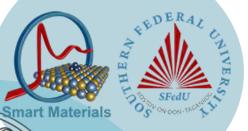
ANNO I 1921-1922

INAUGURAZIONE

ATTI COSTITUTIVI - ORGANIZZAZIONE

Padova, 16 aprile 1878 – Milano, 9 dicembre 1954

Ringraziamenti (MAX-lab



erc

Ed ora.... Tempo delle domande

Grazie a Voi, per l'ospitalità

Sempre con me

Unravelling the secrets of Cu-based catalyst for C-H activation (CuBE)