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Abstract 
 
We review the state of knowledge on the bio-fluid dynamic mechanisms involved in the transmission of the 
infection from SARS-CoV-2. The relevance of the subject stems from the key role of airborne virus 
transmission by viral particles released by an infected person via coughing, sneezing, speaking or simply 
breathing. Speech droplets generated by asymptomatic disease carriers are also considered for their viral load 
and potential for infection. Proper understanding of the mechanics of the complex processes whereby the two-
phase flow emitted by an infected individual disperses into the environment would allow us to infer from first 
principles the practical rules to be imposed on social distancing and on the use of facial and eye protections, 
which to date have been adopted on a rather empirical basis. These measures need compelling scientific 
validation. A deeper understanding of the relevant biological fluid dynamics would also allow us to evaluate 
the contrasting effects of natural or forced ventilation of environments on the transmission of contagion: the 
risk decreases as the viral load is diluted by mixing effects but contagion is potentially allowed to reach larger 
distances from the infected source. To that end, our survey supports the view that a formal assessment of a  
number of open problems is needed. They are outlined in the discussion.  
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1   Introduction 
 
 
In a report published by the US National Academy of Sciences (NAS) on the reuse of facemasks for 
the protection against respiratory viral infection, it is stated that:  
 

The public is likely to forgive lack of knowledge but will not be willing to trust 
public health officials in the next instance if they have in any way been 
misinformed or misled (US National Academy of Sciences, 2006, p. 67) 

 
This statement poses an important question, that of information and citizens’ right to knowledge. 
Bearing this in mind, the Accademia Nazionale dei Lincei Committee on the Environment and Great 
Natural Catastrophes has decided to produce a report on an aspect of the current pandemic that 
deserves attention, not only by the Institutions responsible for managing the pandemic, but also by 
research institutes.  
The question we propose to examine is the state of knowledge on the mechanisms involved in the 
airborne transmission of SARS-CoV-2 infection, with particular reference to the important 
contribution that can be gained to the development of this knowledge from the interaction between 
immunologists, virologists and biofluid dynamic experts. However, some preliminary clarifications 
are needed. The present review does not (nor it reasonably could) claim of being exhaustive. Indeed, 
the question in hand certainly is not new (if not for the particular pathogen involved): many 
researchers, not only in the biomedical fields, have been reporting on this topic for decades. 
Moreover, the explosion of related research publications on SARS-CoV-2 is of unimaginable 
numbers, as shown in Fig. 1. 
 
 

 
 
Fig. 1 Upsurge in research on various aspects of the pandemic: cumulative number of research studies 
(in thousands) published from January to May 2020 (source: The Economist, May 7, 2020). 
https://www.economist.com/science-and-technology/2020/05/07/scientific-research-on-the-
coronavirus-is-being-released-in-a-torrent  
 
 
We just aim to demonstrate how even a partial examination of the relevant literature highlights 
important unresolved issues, suggesting research paths to be pursued.  An important clarification 
concerns practical recommendations regarding personal protection measures and equipment to 
prevent the contagion. They are discussed in Section 5 and in our conclusions. Nonetheless, this is 
done with the awareness that science is responsible for providing the framework of knowledge, and 
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policy to assess the risks and possible decisions, while respecting the necessary distinction of roles 
and transparency regarding the participation of science and politics. 
The open problems where fundamental research, either theoretical or experimental, is needed are 
conveniently grouped into three distinct classes.  
The first class concerns the precise definition of the 'cloud' emitted through the varieties of respiratory 
emissions as a likely mode of disease transmission. Observations confirm that a sizable probability 
exists that normal speaking causes airborne virus transmission, especially in confined environments. 
The modeling of droplet generation mechanisms, that underpin potential contagion through 
destabilization of the mucus layer that covers the respiratory tract, is still hardly mature for 
generalized applications. Somewhat surprisingly, it emerges that currently experimental findings do 
not allow us to single out the proper probability distribution of the size of the droplets, that can be 
associated with the various respiratory emissions. Despite a research effort that has spanned over a 
century and the use of progressively more refined experimental techniques, still the various studies 
provide results that can differ broadly, even by orders of magnitude. Recent developments based on 
ultra-rapid image processing techniques, suggest that, at least in the case of violent emissions 
(coughing, sneezing), the process of droplet formation and dispersion continues in the first phase of 
expulsion through the fragmentation of liquid sheets and filamentous structures, whose modeling 
poses a complex problem of computational fluid dynamics.  
The second class of problems concerns our understanding of the transport processes through which 
the cloud modifies its composition on moving away from the source. These modifications affect the 
possible infection mechanisms. Larger droplets tend to settle in the immediate vicinity of the infected 
emissions, while others are advected away from the source and evaporate at rates dependent on 
temperature and relative humidity of the emitted clouds. Initially warmer and more humid than the 
external environment, clouds undergo mixing with the turbulent ambient air. Therefore, the evolution 
of velocity, temperature and relative humidity fields and their turbulent fluctuations ultimately 
determines the particle size distribution of the droplets. In the distant field, evaporation reduces the 
surviving droplets to their dry nuclei.  
The third class of open problems originates from a simple question: does the infected droplet that 
undergoes evaporation, possibly shrinking to its dry core, remain infectious? This is tantamount to 
addressing the general problem of the prediction of the stability of viruses in environments 
characterized by different temperature and humidity conditions. Even in this domain, science does 
not seem to have reached an assessment to date. Our report draws together several lines of argument 
about the persistence of SARS-CoV-2 infectivity in the environment. Given the relevance of this 
problem, however, it seems surprising that even the fundamental mechanisms that determine the rates 
at which viruses do no longer retain their infectivity in air (e.g. the role of possible coating, dissolved 
salts, and pH variations, to name a few) have not been conclusively assessed to date. 
We also focus on the fluid dynamic background underlying measures and equipment for personal 
protection from the contagion. Remarkably, the analysis of recent visualizations of the respiratory 
emissions by individuals wearing protective masks highlights limits and validity of the use of personal 
protection equipment like face masks and eye protections. An important finding that emerges clearly 
is that the one-meter measure of social distancing recommended by the World Health Organization 
(WHO) is not based on direct scientific evidence, nor is truly conservative. This notwithstanding, the 
effectiveness of social distancing for risk reduction is undisputable, especially if accompanied by 
suitable use of protective equipment: in their absence, the benchmark safe distancing of 1 m, the 
WHO standard, appears largely insufficient.  
This review finally examines the bio-fluid dynamic underpinning of epidemiological models, strongly 
supporting the scientific, social and economic importance of strengthening interdisciplinary research 
on this topic.  
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2   Biology of the contagion  
 
Although this review focuses on the fluid dynamics of the contagion, some information on its 
pathology must also be provided.  

Fig.2. Schematic illustration of the structure of SARS-CoV-2 virion 
 
 
2.1  The virus  
 
The second CoronaVirus causing a Severe Acute Respiratory Sindrome (SARS-CoV-2, Fig. 2) is an 
oily spherical particle, with a 0.125 (0.05-0.2) 𝜇𝑚 (micron) diameter. The outer shell (the pericapsid) 
consists of three structural glycoproteins: Spike, Envelope, and Membrane and a lipid coating. The 
large Spike protein (S), which protrudes on the outside layer, consists of two domains, S1 and S2. 
The most external S1 domain, a region area known as RBD (Receptor Binding Domain), contains an 
area which allows the binding of the virus to human cells. On the surface of SARS-CoV-2, three S 
glycoproteins aggregate to form a homotrimer. Numerous homotrimers protruding outside the 
pericapsid give rise to a crown-like appearance, hence the name Coronavirus (Walls et al. 2020). 
Inside the pericapsid there is a single-stranded positive-sense RNA of about 30 kb containing 30 000 
bases, a very large RNA virus genome (Chan et al. 2020). A forth virus structural protein, the 
Nucleocapsid protein, wraps and coils virus RNA, keeping it stable inside the pericapsid. 
 
 
 
2.2  Physical-biological barrier 
 
Although little is known on the infectious load of SARS-CoV-2, which exerts an important influence 
on the contagion, it is supposedly low, between 10 and 1000 viral particles transmitted via the 
respiratory system (Cyranoski, 2020).  
 
The mucus, a viscous gel that covers the cells of the mucosa of the respiratory tract, harnesses and 
neutralizes the viral particles and thus prevents contact with the surface of the host cells. The mucus  
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Fig. 3. Schematic of the mucociliary barrier providing the first defense against respiratory pathogens. 
 
 
is a complex mixture of glycoprotein continuously produced by goblet cells of the mucous 
membranes and from particular glands. The mucus also contains salts, lactoferrin, enzymes and 
antibodies (secretory IgA and IgM) (Birchenough et al. 2015). The production of mucus is mainly 
regulated by two lymphokines (IL-13 and IL-22) secreted by sentinel lymphocytes associated with 
the mucosal barrier (Fig. 3). IL-13 is produced primarily by Innate Lymphoid Cells (ILC), IL-22 by 
T-helper 17 cells. The overproduction of mucus gives rise to phlegm (Toki et al. 2020). The mucus 
is continuously transported by the cilia of epithelial cells of the mucosal membranes (Fig. 3), it is 
swallowed and destroyed in the stomach. The movement of the mucus is fundamental for its 
protective action (see also 4.3). In normal conditions the ciliary beat frequency is around 700 beats 
per minute. The intensity of the beats is regulated negatively by the IL-13 and is lowered by 
environmental pollutants present in the air we breathe and by the air humidity and low temperature 
(Laoukili, 2001). The low relative humidity and the low temperature of the air we breathe alter both 
the production and the composition of the mucus. Low air temperature also reduces the functionality 
of the immune system cells associated with respiratory mucociliary membranes (Moriyama et al. 
2020). How the environmental conditions influence the protective barrier against SARS-CoV-2 has 
not yet been reported, although the influence that humidity, temperature and pollution in general have 
on the seasonality of coronavirus infections, which cause the common cold, is well known. 
 
 
 
2.3 Penetration into the human cell  
 
If the viral particles overcome the mucus barrier and reach the surface of the cells of the respiratory 
mucosa the RDB zone, present in S1 domain of Spike protein, will bind with high affinity to the N-
terminal domain of ACE2 (Angiotensin-Converting Enzyme 2), an exopeptidase that catalyzes the 
conversion of angiotensin from vasoconstrictor to vasodilator. This enzyme is normally present on 
the membrane of many human cells (Shang et al. 2020). 
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Fig. 4. Schematic representation of the interaction between SARS-CoV-2 and the human cell 
membrane 
 
 
 
Once the virus is docked to the cell, other proteolytic enzymes present on the cell membrane, such as 
TMPRSS2 (TransMembrane PRotease Serine 2) and Furin, remove the outer part of Spike proteins, 
separating the S1 domain from the S2 domain. Following this separation, the S2 domain on the 
external surface of the virus, exposes particular sequences of amino acids (fusion peptides) that 
facilitate the fusion between the viral pericapsid and the membrane of the human cell (Cyranoski, 
2020, Shang et al. 2020). Thanks to this fusion, the RNA of the virus can penetrate into the cell and 
is immediately translated into proteins by host cell ribosomes.  The infected cells then die releasing 
millions of new viral particles that begin to invade other cells and cause the COVID-19 disease. 
 
 
 
2.4  The disease 
 
The clinical characteristics of the COVID-19 disease stem from the competition between the invasive 
action of the virus and the immune reaction. The viral load, its decimation by the reaction of the 
mucociliary barrier, the immediate innate immune response and delayed adaptive immune response 
determine whether the disease will be asymptomatic, mild or severe (Matricardi et al. 2020). There 
are many aspects to this competition, often the reaction leads to ambivalent results, in the sense that 
a reaction aimed at inhibiting viral expansion can lead to events which will promote or worsen the 
course of the disease (Matricardi et al. 2020). During the course of the infection the virus will spread 
from the nasal and tracheal epithelium to the lungs. With greater or lesser effectiveness immune 
reactions hinder or block the virus spreading. The direct transmission of the SARS-CoV-2 to the 
pulmonary alveoli could also be favored by deep breathing, as it would occur with intense athletic 
exercise (Matricardi et al. 2020).  
Once it reaches the lung, the SARS-CoV-2 infects and kills the alveoli cells that overexpress the 
ACE2 receptor enzyme. In the lungs, the violent immune reaction that is triggered against viral 



 8 

infection contributes significantly to the onset of a severe respiratory insufficiency, known as ARDS 
(Acute Respiratory Distress Syndrome). ARDS, together with disseminated intravascular coagulation, 
represent the most severe complications of the COVID-19 disease.  
 
 
 
 
3  Possible mechanisms of exposure to infection 
 
 
It is commonly agreed that SARS-CoV-2 is highly infectious. The reason for this is still not entirely 
clear. It is an important question, that cannot be resolved solely by epidemiological studies, since it 
requires first a clear understanding of the possible mechanisms of exposure to the virus.  
 
 
3.1 Direct contact and airborne transmission 
 
The airborne transmission, the dominant route of SARS-CoV-2 spread, does not necessarily involves 
a physical contact between the infected and the susceptible persons. The virus is transmitted mainly 
via small respiratory droplets containing the viral particles that the infected person exhales when 
coughing, sneezing or talking. The amount of virus released increases as the infection progresses. 
The amount of virus spread by an infected person who is asymptomatic is significantly lower than 
that of a COVID-19 patient with symptoms (Ferretti et al. 2020). However, the magnitude of the 
transmission of SARS-CoV-2 by infected asymptomatic people is difficult to assess, although 
numerous data from China (Day, 2020), as well as studies conducted in Vo' Euganeo, Italy (Lavezzo 
et al. 2020) and in Iceland (van Doremalen et al. 2020) reveal that a large percentage of the infected 
population is asymptomatic.  It is therefore likely that asymptomatic and presymptomatics individuals 
are the largest source of infection. 
 
The virus spread by an infected person can also be deposited on various surfaces. It is therefore 
possible to transmit the infection also through contact between a susceptible and an infected person, 
either directly (e.g. hand shaking, one of which is infected) or indirectly, through fomites (e.g. a 
contaminated handkerchief). Infection takes place if the susceptible individual touches his/her mouth, 
nose or eyes after picking up the virus by touching an infected surface (Wang et al. 2020).   
Two aspects play a fundamental role in assessing the importance of the different mechanisms of 
infection: knowledge of the viral load that could potentially be released via respiratory droplets, and 
knowledge of the persistence of the viral infectivity over time, in relation to the variations in 
environmental conditions.  Unfortunately, the present state of knowledge on these two aspects does 
not allow us to make conclusive statements.   
 
Viral load analysis has been performed by Wölfel et al. (2020) on nasal, oropharyngeal and sputum 
swabs of SARS-CoV-2 patients. The viral load recorded was dependent on the time that had elapsed 
since the onset of the symptoms. In salivary secretions the virus load was around 7 x 106 virions per 
milliliter, with peaks exceeding 2 x 109 virions per milliliter.  
 
Results on the persistence of viral infectivity of SARS-CoV-2 virus have been reported by van 
Doremalen et al. (2020) and Chin et al. (2020). The first group assessed the stability of virus 
infectivity in aerosols maintained at 21-23 °C and relative humidity of 40%. The results show a 
persistence of virus infectivity for the entire duration of the experiment (3 h), albeit with a decrease 
in viral load by a factor of about 6, a decrease that is similar to that found for SARS-CoV.  Chin et 
al. (2020) measured the stability in the laboratory of SARS-CoV-2 maintained at different 
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temperatures. Tests for its infectivity were performed after a 14-day incubation period. The virus was 
very stable at 4 °C, showing a reduction of the infectious load by a factor of 5 on day 14. Increasing 
the temperature to 70 °C, the virus became inactive within 5 minutes.  
Previous studies have been conducted on both the MERS-CoV, the coronavirus which caused the 
Middle East Respiratory Syndrome - MERS - in 2012 (Pyankov et al. 2017) and HCoV 229E 
coronavirus (Geller et al. 2012). In the first case, 63% of the virus nebulized in particles between 1 
and 2 µm remained infectious after one hour at 25 °C and 79% relative humidity, whereas particles 
kept for one hour in warmer and drier environment (38 °C and 24% relative humidity) reduced the 
virus infectivity to less than 5%. The second study reported data on the persistence of viral infectivity 
of the aerosolized HCoV229E virus, kept for a period ranging from 15 minutes to 6 days at 20 °C in 
the presence of different relative humidity levels. After 15 minutes with 80% relative humidity, only 
55% of the viral particles remained infective. On the contrary, with 30% and 50% relative humidity, 
90% and 87% of the viral particles remained infective. After six days, 20% of the viral particles kept 
at 30% relative humidity were still infectious, while there was no infectious activity in the particles 
kept at 80% or 50% relative humidity. The influence that the relative humidity and temperature have 
on the virus is evident in the study by Ijaz et al. (1985), which shows that in a 20°C environment the 
infectivity of the HCoV 229E coronavirus remains very high in the presence of 50% relative 
humidity, while it decreases significantly with both 30% and 80% relative humidity. When the 
temperature is lowered to 6 °C, the virus remains highly infectious at both 50% and 30% relative 
humidity, while it loses its infectivity at 80% relative humidity.  
 
These results reveal a partly contradictory and inconsistent response: MERS-CoV seems to not endure 
a hot and dry climate, while SARS-CoV-2 and HCoV 229E viruses remain stable in low humidity 
environments. However, these data suggest that changes in relative humidity drastically affect the 
infectious power of the coronaviruses. This effect is evident both at temperatures around 20-25 °C 
and at lower temperatures. Further data are necessary to establish the survival of SARS-CoV-2 in 
different environmental conditions and to predict the seasonality of the infection (see the recent 
review by Moriyama et al, 2020 on the seasonality of coronaviruses).  However, the general 
observation remains that other viruses, such as polio, Sabin strain, appear much more fragile than the 
coronaviruses.  
 
As far as the stability of the viruses on surfaces, van Doremalen et al. (2020) analyzed the persistence 
of infectivity of SARS-CoV-2 on different surfaces and observed that their stability is higher on 
plastic and stainless-steel surfaces than on copper and cardboard. On plastic (steel) surfaces the virus 
retained its infectivity for 72 (48) h, with viral load reduction by a factor greater than a thousand. 
SARS-CoV showed similar results. On copper (cardboard) surfaces the viral load had disappeared 
after 4 h (24) h. In a similar study by Chin et al. (2020) a 5 µL droplet of virus culture was pipetted 
on a surface and left at room temperature (22 °C) with relative humidity around 65%. No infectious 
virus was detected after 3 h, 2 g, 4 g, 7 g, respectively on paper, wood-fabrics, glass and banknotes, 
stainless steel and plastic surfaces.   In addition, a measurable level of infectious virus (around 0.1% 
of the initial value) was still present on the outer surface of a surgical mask after 7 days. 
 
An outline of the findings on the stability of coronaviruses on various types of surfaces is reported in 
Kampf et al. (2020). Results are illustrated schematically in Fig. 5 (Fathizadeh et al. 2020). A 
comparison with results obtained from the SARS-CoV-2 suggests that survival of the virus strongly 
depends on the specific characteristics of the virus, as well as on the environmental conditions.  
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Fig. 5  The sketch illustrates the results from scientific literature on the persistence of different viruses 
on various surfaces (reproduced from Fathizadeh et al. 2020)  
 
 
3.2  Large droplets and small droplets. 
 
In the epidemiological literature (e.g. Asadi et al. 2019) it is suggested that in airborne transmission 
there are two mechanisms involved:  
 
- ‘Close’ infection associated with large droplets, in close proximity to the infected person  
 
- ‘Distant’ infection associated with small droplets, which can remain airborne for a very long period 
of time and, therefore, can reach a 'large' distance from the infected person (how large will be 
discussed later in this review). When inhaled, particles of this size can directly reach the deep part of 
the respiratory system. Indeed, their presence has been clearly ascertained with the SARS-CoV-2 in 
the bronchoalveolar lavage fluid of infected people in Wuhan and Beijing (Zhu et al. 2020).     
It may be surprising to learn that the dichotomous classification of airborne transmission: 'big' 
droplets - 'small' droplets, with the implication of 'close' versus 'distant' infection, dates back to an 
important and much cited study on tuberculosis transmission published almost a century ago (Wells, 
1934). The classification was based on the following criterion:  
 
- The 'large' droplets settle quickly and thereby do not undergo total evaporation. Therefore, the 
infection can take place only in the area close to the infected person;  
 
- The 'small' droplets, pass from the hot and humid environment of the respiratory system of the 
infected person to the colder and less humid external environment and thereby evaporate rapidly and 
are transformed into dry residual particles, the 'nuclei of the droplets'.     
Thus, two important players are involved in the process: droplet sedimentation and droplet 
evaporation.   
The time scale of sedimentation can be easily estimated by referring to the simplest case, that of a 
'small' rigid sphere that deposits in an otherwise stationary fluid. This approximation obviously 
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ignores the possible reduction in diameter induced by droplet evaporation. In the low Reynolds 
number approximation, the settling speed ws of a rigid sphere is given by Stokes formula ws = g d2 

/18 na , with  d particle diameter, na  kinematic viscosity of the air (= 1.5 10-5m2/s at 20 oC),  g gravity 
and s relative density of the droplet in air (s=816 at room temperature).  Hence, droplets with a 
diameter equal to 100	𝜇m settle with a speed of about 0.3 m/s, corresponding to a Reynolds number 
equal to 2, for which the Stokes approximation would not be strictly valid but is still sufficient for 
our illustrative purposes. Note that the settling time increases very rapidly as the particle diameter 
decreases, hence the smaller is the droplet the higher is the role of evaporation.   
By contrast, the evaluation of the time scale of the evaporation process is not so immediate. 
Evaporation  results from heat and mass exchange at the droplet-air interface. Within a purely 
diffusive scheme (stationary gas phase), both these processes originate from the existence of a 
gradient (temperature and vapor concentration respectively) at the interface. Indeed, the droplet 
coming from the respiratory system is warmer than air, the vapor concentration in the gas at the 
interface is higher than the vapor concentration at a distance from the droplet. Motion of the gas phase 
gives rise to convective effects, associated with both the mean flow field and the turbulent fluctuations 
if the air motion is turbulent The latter important aspect was overlooked by Xie et al. (2007) (see 
discussion in Sect. 4.4).  
Wells (1934) was the first to attempt an estimate of the evaporation time in the epidemiological 
context, although the procedure he used to obtain the result plotted in Fig. 6 is not wholly clear (Xie 
et al. 2007). From his model, Wells (1934) concluded that, under ordinary conditions, droplets smaller 
than 100	𝜇m evaporate completely before depositing. As a result, ‘close' infection would be 
associated with droplets larger than 100	𝜇m. His study also showed the mechanism by which droplets 
are transformed into dry 'nuclei'. 
 

 
Fig. 6. A plot of the sedimentation-evaporation of the droplets (Wells 1934), providing an estimate 
of the time scale of the two processes as a function of the droplet size (from Xie et al. 2007). 

 
 

Surprisingly, for over 70 years, the foundation of this study has been accepted by the epidemiological 
community without any attempt to re-examine the analysis, despite the fact that the problem of droplet 
sedimentation-evaporation has received great attention in many other fields, from cloud physics, to 
combustion, spray technologies, ink-jet printing, just to name a few. Only recently, Wang et al. (2005) 
and, subsequently, Xie et al. (2007) have revised Wells' findings using physical models able to 
account, even if in a simplified manner, for most of the phenomena that play some role. In particular, 
they have introduced a third ingredient in the formulation, namely the convective effect of the fluid 
which transports the particles.  The latter was treated as a jet, an assumption that is inappropriate, as 
discussed in 4.4.   
The picture arising from the study by Xie et al. (2007) confirms, but also corrects the outcome of 
Wells (1934) analysis. In particular:  
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-  If convective effects are overlooked, then results confirm the existence of a critical droplet size dc 
below which the droplet evaporates completely before settling. The critical value of the droplet size 
depends on the relative humidity of the air (Hr) and is greatly reduced as Hr increases (dc =125 𝜇m, 
100 𝜇m, 85 𝜇𝑚 and 60 𝜇m, for Hr = 0%, 50%, 70% and 90%, respectively). These values are however 
lower than those predicted by Wells (1934).  
 
- Taking into account the convective effect associated with the mean flow, the picture is further 
modified. The larger droplets leave the stream quickly and settle; the intermediate droplets leave the 
stream and evaporate totally before settling; the smaller droplets are transported by the stream until 
they evaporate completely and become dry nuclei. Moreover, the horizontal distance travelled by the 
droplet before settling (or evaporating) is strongly dependent on the initial speed of the cloud (hence 
on the type of expiratory emission), as well as on droplet size and relative humidity.  
 
 

 
Fig. 7  Horizontal distances reached by droplets of various sizes as the initial speed U0 of the 
expiratory jet increases according to Xie et al. (2007)  (reproduced from Xie et al. 2007). 
 
 
- Fig. 7 shows that the diameter of the droplets that reach the maximum distance increases from 30 
𝜇m to 50 𝜇m as the initial speed increases from 1 to 50 m/s, respectively. Furthermore, the droplets 
do not reach distances exceeding 1 m with a stream velocity of 1 m/s (normal breathing), but do reach 
distances of more than 6 m with a stream velocity of 50 m/s (sneezing)! 
 
- Finally, the simulations show that, as the relative humidity decreases, the size of the particles that 
reach a distance of 2 m before evaporation decreases. In effect, as the relative humidity decreases, the 
evaporation process is enhanced and the number of particles that evaporate completely increases. 
This would suggest that low ambient humidity favors the airborne spread of the infection, confirming 
the results by Wang et al. (2005). Indeed, as discussed in 3.1, coronavirus infectivity is drastically 
affected by the mutual interaction between relative humidity and temperature.  
 
Note that these conclusions are based on the assumption that a dry residual nucleus of a droplet retains 
its infective capacity. As will be illustrated in 4.4, they are also crucially dependent on the neglected 
role that the turbulent character of two-phase expiratory flows can play on the evolution of the 
humidity field and, therefore, of the droplet spectrum.    
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3.3  ‘Close’ or ‘distant’ infection transmission? 
 
The scientific community has not reached a unanimous consensus on the relative importance of the 
various mechanisms of infection transmission for several infective diseases. In particular, the role of 
airborne transmission has been emphasized for the flu, tuberculosis, cold and whooping cough 
(Fennelly et al. 2004; Tellier, 2006, 2009; Atkinson and Wein (2008); Fabian et al. 2008; Clark and 
de Calcina-Goff, 2009). Studies performed on SARS indicate the importance of both ‘close’ and 
‘distant’ transmission (e.g. Wong et al. 2004; Yu et al. 2004). As for SARS-COV-2 the state of 
knowledge is quite uncertain (Lewis, 2020). In a few recent preprints (Liu et al. 2020; Santarpia et al. 
2020) the presence of viral RNA from SARS-CoV-2 has been reported in aerosols collected in various 
locations of Wuhan’s hospital and its neighborhoods, as well as in air and surface samples in a hospital 
in Nebraska hosting COVID-19 patients. Indirect mechanisms thus support the use of airborne 
isolation precautions when caring for COVID-19 patients. It must be underlined, however, that the 
presence of viral RNA does not imply the presence of infectious virus.  
 
The uncertainty on the mechanism of infection transmission is not surprising. Indeed, resolving the 
‘close’-‘distant’ dilemma requires that a bunch of important issues, that complicate the picture 
outlined in the previous sections, be preliminarily tackled. They concern the fluid dynamics of the 
variety of processes whereby the virus moves from the airways of the infected individual to its 
susceptible target. How do expiratory emissions form within the respiratory system? And how do 
they transform into the system of droplets contained in the two-phase flow? What is the grain size 
distribution of droplets? Can one identify a threshold value of the grain size, to allow a scientifically 
sound distinction between large and small droplets? How does the two-phase flow evolve and how is 
its structure affected by turbulence? We will review the state of the art on these issues in Sect. 4 
considering both violent expiration events (cough and sneeze) and normal ones (breath and speech). 
Indeed, it has been known for some time and has been confirmed by recent studies (cfr. 4.1), that in 
the normal breathing and speaking functions, a large number of aerosols is released in the air. They 
consist of small droplets, invisible to the naked eye, and easily inhaled, which are however large 
enough to host virus particles. This feature may help explaining whether this mode of virus 
transmission is responsible for the role apparently played in the SARS-CoV-2 transmission by 
asymptomatic or weakly symptomatic individuals who, by definition, do neither cough nor sneeze. 
In this respect, note that the epidemiological model of Li et al. (2020) suggests that roughly 86% of 
infected individuals in Wuhan, prior to lockdown implementation, had not been tested because they 
were either asymptomatic or weakly symptomatic.  
 
A last crucial issue is that of ascertaining to what extent these processes are affected by the 
environmental conditions, i.e. air temperature and humidity, as well as by the presence of ambient air 
motion driven by natural or forced ventilation. A few hints on these aspects are given in 4.5.  
 
 
 
4   Fluid dynamics problems arising in airborne infection transmission 
 
Below, we follow an inductive approach by letting open problems emerge from a review of the 
progressive development of research.  Transmission of COVID-19 could be summarized as follows. 
Human atomization of viruses arises from coughing or sneezing of an infected person, producing 
virus-containing droplets (>5 𝜇m) and aerosols (<5 𝜇m). Virus transmission from person to person 
occurs via the variety of direct/indirect contacts and airborne aerosol/droplet routes (say, via nascent 
aerosols from human atomization). Large droplets mainly settle out of air to cause person/object 
contamination, while aerosols are dispersed in air. Direct and airborne transmissions occur at short 
range and extended distance/time, respectively. Inhaled airborne viruses deposit directly into the 
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human respiration tract (Zhang, Zhang, Wang and Molina 2020). Overall, the prevailing view is that 
airborne transmission is highly virulent and represents the dominant route of spread of the disease. 
  
 
4.1 Key features of the particles emitted by the respiratory activities 
 
The seminal papers of Flügge (1897) and Wells (1934) have highlighted since the ‘40s of the past 
century, the importance of better characterizing the size distribution of the droplets emitted by 
expiratory events. It is somewhat striking to note that the early study of Duguid (1946) had 
motivations quite similar to those that inspire the current investigations, including the possible role 
of asymptomatic individuals: “…The expiratory activities which have been considered productive of 
droplet-spray, are sneezing, coughing, speaking, laughing and normal breathing. The significance of 
the part played in the spread infection by each of these activities may be gauged according to the 
number of droplets which it produces and according to the frequency of its performance. Generally, 
it has been found that sneezing and coughing produce many droplets, while speaking, laughing and 
breathing produce few. These latter activities may, however, be of considerable importance, for their 
performance is frequent and, moreover, they afford the only means of droplet-spray production in the 
case of healthy carriers, who normally neither cough nor sneeze…” pp. 385-386). And also: “Thus, 
to assess the chances of air infection being produced by droplet-spray, information is required 
concerning the localities from which droplets, especially small droplets, may originate during the 
various expiratory activities, and also concerning the numbers of droplets which may arise from each 
site….” (p. 387).  
 
Considerable efforts have since been devoted to measuring the size distribution of the droplets emitted 
by expiratory events, either normal breathing and speaking or violent ejections associated with 
sneezing or coughing. The underlying assumption of most investigations is that the ejected droplets 
would form within the respiratory system, i.e. before being emitted. Different experimental 
techniques have been used to measure the size distribution of the exhaled droplets and, surprisingly 
enough, results of different investigations can differ broadly, even by orders of magnitude. Let us 
provide a brief overview of the picture offered by the state of the art.      
 
The first systematic measurements presented in literature date back to the papers of Wells (1934) and 
Duguid (1945, 1946). These measurements were carried out sampling the droplet spray released by 
coughing, sneezing or simply speaking on glass or Plexiglass plates placed in front of the mouth of 
the subject under examination. The traces left on the plates were then analyzed under the microscope 
using an empirical correlation to obtain the size distribution of the original droplets. A slit impactor 
was instead used to collect the finest size fractions (around 1-2 µm). Alternatively, Jennison (1942) 
counted the photographic images of the droplets taken at high speed against a black background and 
enlarged. Comparable results have been obtained more recently (Xie et al. 2009) by means of a similar 
technique for collecting the larger droplets and an Optical Particle Counter (OPC, size range 0.3-20 
µm) for directly measuring the size of smaller droplets or droplet nuclei. The size of the collected 
droplets was then correlated to that of the original exhaled droplets on the basis of the time spent by 
the droplet to fly from the mouth to the sampling position. The authors called it “residence time” and 
estimated it calculating the time taken by the droplet to freely fall from the mouth height to the height 
of the sampling position. The original size of the droplets was then calculated based on the 
evaporation model proposed by Xie et al. (2007) (see 3.2). 
 
Papineni and Rosenthal (1997) used a combination of OPC and Analytical Transmission Electron 
Microscope (ATEM). Contrary to previous studies, these authors found a predominance of sub-
micron particles (80-90 %) within the exhaled droplet spray. In general, coughing produced the 
largest droplet concentrations and nose breathing the least, although considerable inter-subject 
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variability was observed. One of the limitations of the measurements of Papineni and Rosenthal 
(1997) (pointed out by Morawska et al. 2009) was the uncertain relationship between the size of the 
collected droplets and that of the originally exhaled ones. In fact, the droplets remained suspended in 
the air before sampling for a sufficient time to allow at least partial evaporation. It could then be 
hypothesized that the measured droplets were, in fact, the residues left after evaporation. 
 
Yang et al. (2007), Morawska et al. (2009) and Johnson et al. (2011) used an Aerodynamic Particle 
Sizer (APS, size range 0.5-20 µm) to measure particle size and concentration. In particular, Yang et 
al. (2007) analyzed   cough emissions distinguishing between droplets and residues. The droplets 
were collected in a sampling bag and then sized. The droplet residues were directly measured by a 
Scanning Mobility Particle Sizer (SMPS, size range 3 nm – 1 µm). The droplet size spectra exhibited 
a tri-modal distribution over a size range 0.62-15.9 µm with an average value around 8.35 µm, while 
the size of the residues ranged between 0.58 and 5.42 µm. The results of Morawska et al. (2009) were 
only in partial agreement with those of Papineni and Rosenthal (1997). In particular, the vast majority 
of the droplets was in the very fine range, between 0.1 and 1 µm. The particle concentration depended 
also on the type of emission, with maxima associated to coughing and minima to normal breathing. 
On the other hand, speech released a concentration of particles one order of magnitude higher than 
normal breathing, strongly depending on the speech loudness. In addition, the particle number 
concentrations measured by Morawska et al. (2009) were over one order of magnitude higher than 
those measured by Papineni and Rosenthal (1997) and three orders of magnitude lower than in Yang 
et al. (2007), highlighting the complexity of these experiments and the influence of the specific 
measurement technique.  
 
The latter important issue was tackled by Morawska et al. (2009) reanalyzing the results of their 
previous experiments. Evaluating the time between particle release and measurement of particle size, 
they inferred that in their experiments the droplets had attained the equilibrium size resulting from 
the evaporation process. These results were extended by Johnson et al. (2011) who, in addition to the 
APS, used Droplet Deposition Analysis (DDA) to size the droplets larger than 20 µm. This 
experimental set-up allowed the identification of a tri-modal distribution of the emitted droplets, with 
modal diameters of 1.6, 2.5 and 145 µm  or 1.6, 1.7 and 123 µm in the case of speech or cough, 
respectively. The authors speculated that the three modes are associated with three distinct locations 
of droplet formation: one occurring deep in the lower respiratory tract (bronchioles), another in the 
region of the larynx and a third in the upper respiratory tract including the oral cavity.  
 
The importance of sampling the droplet spray as close as possible to the mouth to avoid both the 
evaporation of the droplets and the dilution of the exhaled breath, was recognized by Chao et al. 
(2009). For this reason, these authors used an interferometric technique (Interferometric Mie Imaging, 
IMI) that provides an accurate measurement of the droplet size from the between the interference 
fringes produced by a laser source impinging on the droplets. This technique is suitable for transparent 
spherical droplets and has the advantage of allowing non-invasive measurements very close to the 
mouth. These authors also measured the velocity of the expiration air jet by means of Particle Image 
Velocimetry (PIV). Their main results can be summarized as follows: 
 i) the average exhalation velocity was 11.7 m/s for cough and 3.9 m/s for speech; 
 ii) the median diameter of the exhaled droplets was 13.5 µm for cough and 16 µm for speech; 
 iii) the total number of exhaled droplets was in the range 947-2085 for cough and 112–6720 for 

speech; 
 iv) the estimated evaporation of the droplets was found to be negligible.  
Further non-invasive measurements were carried out by Zayas et al. (2012) and Han et al. (2013) with 
the help of a laser diffraction technique. In particular, the purpose of Zayas et al. (2012) was to 
characterize the aerosol distribution released by human cough, with the aim of developing a standard 
model for Influenza Pandemic control. Indeed, as discussed in 4.3, cough represents one of the main 
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mechanisms to remove the mucus lining the human airways that is entrained by the high-speed airflow 
associated with the expulsive phase. The laser diffraction system allows to measure the concentration 
of  droplets, assumed spherical, in a size range 0.1 - 900 µm with a sampling frequency of 2.5 m/s. 
The results, presented in Fig. 8, show that the droplets in the sub-micron range, represent 97% of the 
exhaled spray droplets for each single cough event.  
 
 

 
 
Fig. 8  Size distribution of the droplets emitted by cough (reproduced from Zayas et al. 2012). 
 
 
On the other hand, Han et al. (2013) focused on the more powerful respiratory events caused by 
sneezing. The resulting picture changes again. The first important observation concerns the type of 
grain size distribution. Uni-modal droplet size distributions (Fig. 9a) were found in the case of twelve 
patients, for other ten of them the distribution was bi-modal (Fig. 9b) and, in the case of other three 
patients, both uni- and bi-modal distributions were recorded. The size distribution was stable during 
the sneezing events, lasting 0.3-0.7 s. The second important observation concerns the average values 
of the size distributions: 360.1 µm in the uni-modal case and 74.4 µm in the bi-modal case (with 
average values for the two peaks 386.2 and 72.0 µm, respectively). These values are much higher than 
those measured by the other authors, although for different expiratory events.  
 
 

 
  
Fig. 9 Unimodal (left) and bimodal (right) distributions of the volumes of droplets recorded for sneeze 
emissions of 23 patients (reproduced from Han et al. 2013).  
 
 
This is clear from a glance at Fig. 10, which shows a comparison between the results obtained by Han 
et al. (2013) and those of various other authors. This comparison, although far from being 
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representative of the wealth of data reported in literature, is sufficient to highlight the level of 
uncertainty that still exists on this phenomenon.  
 

 
 
Fig. 10  Comparison between the size distributions of the droplets emitted by sneeze and speech (left) 
or sneeze and cough (right) as measured by different authors (modified from Han et al. 2013).  
 
 
The reasons for this uncertainty are manifold. Some of them are connected to the different 
experimental techniques employed in different investigations. In particular, the distance between the 
emission source and the sizing instrumentation implies a different rate of droplet evaporation. 
Furthermore, the different techniques have different accuracies, although this can hardly account for 
the dramatic differences of results. 
 
Two critical aspects, on which research is progressing, may help explaining the disappointing 
outcome of the investigations reviewed above. We need to fully understand the fluid dynamics of 
droplet formation and the dynamics of the evolution of the two-phase flow associated with expiratory 
events. These aspects are discussed in the next section.  
 
 
 
4.2  Experimental observations of the dynamics of expiratory events  
 
We now investigate the physical mechanisms that control the dynamics of expiratory events. It is 
convenient, in this respect, to distinguish among the various typologies of such events, namely 
sneezing, coughing, speaking and simply breathing.  

 
Coughing 
 
The integral properties of the expiratory flux associated with coughing have been widely investigated. 
Fig. 11 shows a typical dependence of the expiratory flow rate on time, as measured by Gupta et al. 
(2009) for a cough event. Also shown are a few characteristic properties of the cough phenomenon.  
Note, in particular, the initial, short and weak inhalation which precedes expiration. The typical 
duration of a cough event is 200-500 ms, mouth opening of male subjects averages (4 ± 0.95) cm2, 
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the Reynolds number is about 104. Similar values have been obtained by other Authors, as discussed 
by Gupta et al. (2009) and Bourouiba et al. (2014).    
 

 
Fig. 11 Characteristic trend of the expiratory flow rate associated with a cough event. The Table 
reports the measured values of the peak flow rate (CPFR), the total expired volume (CEV) and the 
peak velocity time (PVT) (reproduced from Gupta et al. 2009) 
 
 
 
Progress in the understanding of the mechanics of the expiratory process has been recently made 
through visualization of the cloud typically released by distinct expiratory events.  Schlieren and high 
speed imaging techniques have been typically employed. A review of the early contributions is 
reported by Gupta et al. (2009).  
 
The recent work of Bourouiba et al. (2014) deserves special attention. Images were recorded at a 
frequency of 1,000-4,000 frames per second (fps). Adding smoke in some experiments allowed to 
track the flow of the gas phase. The expiratory flux consisted of a turbulent gas cloud containing 
suspended droplets. The larger ones followed ballistic trajectories, which were not affected by the 
motion of the gas phase significantly. The smaller ones remained in suspension in the turbulent cloud 
and reached larger distances from the source. Figs. 12 (a–d) show results of cough visualization 
recorded at a frequency of 1000 fps. The sequence illustrates the evolution of the cloud up to 106 ms 
from the start of the expiratory event. Figs. 12 (a–c) suggest that, in the initial phase, the cloud has a 
cone shape and the droplet concentration is high. Fig. 12e shows the ballistic trajectories of the largest 
droplets. Fig. 12f shows the smoke visualization of the motion of the gas phase, recorded at a 2000 
fps.  
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Fig. 12. Images of the cloud released by a cough event recorded at a frequency of 1000 fps. (a) 0.006 
s, (b) 0.01 s, (c) 0.029 s and (d) 0.106 s. (e) ballistic trajectories of the largest droplets. (f) smoke 
visualization of the motion of the gas phase recorded at 2000 fps. In (e) the instantaneous images of 
the trajectories of all the droplets recorded throughout the entire sequence are superimposed. 
Similarly for the smoke particles in Fig. 9f (reproduced from Bourouiba et al. 2014). 
 
 
It is well known that flows of homogeneous fluids issuing from localized sources can be classified as 
jets, puffs, plumes and thermals. Jets and plumes are both generated by persistent sources but they 
differ as the driving force of the former flows is momentum whilst the latter flows are driven by 
buoyancy, i.e. the excess (or defect) of gravity due to the different density of the cloud relative to the 
environment.  Puffs and thermals are the equivalent of jets and plumes when the source is not 
persistent.  It is also well known that a common characteristic of all these flows is the process of 
entrainment, whereby the cloud mixes with the air of the surrounding environment. As the latter is 
initially still, the cloud slows down as it moves away from the source, an effect displayed by the 
divergence of the cloud. The cough cloud exhibits a mixed behavior. In the initial (expulsion) phase 
the jet behavior dominates. Indeed, buoyancy, that is driven by the difference between the cloud 
temperature and the temperature of the ambient air, is negligible in this phase. At the end of the 
expulsion phase, the jet evolves into a puff.  Moreover, the puff is progressively affected by buoyancy 
as the cloud loses momentum, hence a puff-thermal behavior eventually emerges. It is buoyancy that 
controls the curvature of the cloud trajectory whereby the cloud, which is initially inclined downward 
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by an angle of 24±7° with respect to the horizontal (Bourouiba et al. 2014), tends to rise upward in 
the far field. 
    
The process is further complicated by the fact that the released cloud may hardly be interpreted as a 
homogeneous fluid. It rather consists of a two-phase mixture of droplets dispersed into a fluid phase 
which is hotter and more humid than the ambient air. This has the important consequence that the 
mixture characteristics change as it moves away from the source. On the one hand, as already pointed 
out, larger droplets settle. On the other hand, smaller droplets are carried by the cloud and undergo 
evaporation depending on the variation of the temperature and relative humidity fields.  We will 
return to these features in the next section, where we will outline some known attempts to model the 
process and discuss the issues that still await to be fully explored. 
 
 

  
  
Fig. 13  Images of the cloud expelled by sneezing, recorded at a frequency of 1000 fps (a) 0.007 s, 
(b) 0.03 s, (c) 0.107 s, (d) 0.162 s, (e) 0.251 s, (f) 0.34 s (reproduced from Borouiba et al. 2014). 
 
 
Sneezing 
 
The above observations have shown that, in the cough case, the liquid component of the cloud consists 
of droplets already in an immediate neighborhood of the mouth. The case of sneezing turns out to be 
more complicated. Fig. 13 shows a sequence of images of the structure of the cloud expelled by a 
sneeze (Bourouiba et al. 2014), visualized by a technique identical with that employed for coughs. 
The duration of the event was 200-250 ms. The initial value of the Reynolds number was estimated 



 21 

at 4 × 104, i.e. the strength of the sneeze expulsion was roughly four times larger than cough. Other 
features of the cloud were similar to those found in the cough case, notably the loss of large droplets 
settling in the initial phase and the onset of buoyancy effects, which let the cloud trajectory deviate 
upward. However, a distinct feature of the sneeze cloud was its large density in the initial phase. At 
this stage, the liquid component of the cloud did not consist of droplets, but rather of structures of 
fairly large size, which were still discernible at some distance from the mouth. 
 
 

 
  
Fig. 14 Lateral (a, 8000 fps) and top (b, 2000 fps) views of the initial phase of the expiratory expulsion 
associated with a sneeze. Droplets (right column, t=117 ms) form from the fragmentation of complex 
structures evolving from sheets and bags (left column, t=8 ms) into elongated filaments (central 
column, t=21 ms) (reproduced from Scharfman et al. 2016) 
 
 
This feature may bear some relevance to the issue of understanding the large differences between the 
size distributions of droplets measured by different Authors. It  was further investigated by Scharfman 
et al. (2016) who used the same technique of Bourouiba et al. (2014) with larger sampling frequencies 
(8,000 fps).  Scharfman et al. (2016) observations (Fig. 14) show clearly that, in the case of sneezes, 
the fragmentation processes leading to droplet formation persist after the expiratory ejection. Indeed, 
Fig. 14 shows the presence of actual droplets only after 117 ms (left column), and their formation 
appears to result from the fragmentation of more complex structures that, in the expulsion phase 
consist of sheets and bags (left column, t=8 ms). These then evolve into elongated structures in the 
form of filaments displaying the presence of pearls (central column, t=21 ms). 
  
 
Speech  
 
Less attention has been devoted so far to investigating the expiratory events associated with normal 
or loud speaking. Recently Anfinrud et al. (2020) have reported results of an experiment where the 
cloud released by an individual who repeated many times the same sentence (‘stay healthy’) was 
visualized. The technique consisted of the generation of a vertical laser sheet, 1 mm thick and 15 mm 
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high, which was directed through slits on opposite sides of a cardboard box whose interior was painted 
black. When the individual pronounced a word, a cloud of droplets was released. Droplets moved 
along a distance of 50- 75 mm before they crossed the laser sheet. As a droplet crossed the sheet, a 
flash was produced (Fig. 15B). Its brightness was a function of the particle size as well as of the 
fraction of time the particle remained on a single video frame. Sampling frequency was 60 fps. The 
original video can be downloaded from the following site: https://doi.org/10.5281/zenodo.3770559). 
 

  
  
Fig. 15 The panel A shows the number of flashes that were recorded in a single video frame. Sampling 
frequency was 60 fps. Green denotes the time when the person spoke. Note that, during the silent 
intervals (grey line), the number of flashes did not vanish immediately, presumably because a few 
droplets remained in the box for a few seconds after speaking stopped. Panel B shows a photogram 
corresponding to a peak in droplets emission (see arrow in panel A). The different brightness of 
individual flashes indicates the different droplet size (modified from Anfinrud et al. 2020).   
 
 
Fig. 15 A shows that the number of flashes recorded in a single frame has a peak (see arrow). The 
peak was found to be clearly associated with the pronunciation of the letters “th” of the word 
“healthy”. Repeating the same sentence three times, with short intervals between them, gave rise to 
similar emissions, with peak values of the number of flashes depending on how loud was the speech. 
The light scattering method proves extremely sensitive, i.e. it allows to reveal the presence of 
medium-sized (10 µm to 100 µm) droplets, which remain in suspension for at least 30 s. As a result, 
the estimated values of the average droplet emission rates was 2,600 s−1 with peaks as high as 10,000 
s−1, values much larger than those detected in previous works of Duguid (1946), Morawska et al. 
(2009), Chao et al. (2009) and Asadi et al. (2019).  
 
More recently, the same research group (Stadnytskyi et al. 2020) derived quantitative estimates for 
both the number and size of the droplets that remain airborne. Essentially, these Authors used an 
internal fan to mix the cloud inside the box, turned it off 10 s after speech was terminated, and kept  
recording for as long as 80 min.  Analyzing the movie clip frame by frame, they then observed an 
exponential decay of the number of scattering particles, from which they estimated a half-life in the 
enclosure of ca. 8 min. Assuming that the latter corresponds to the settling time of a particle in the 
box, they estimated that the droplet nucleus had a size of roughly 4 µm. At the relative humidity and 
temperature of the experiment, the dehydrated particle of 4 µm corresponded roughly to a hydrated 
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droplet of ca. 12- to 21-µm size.  At an average viral load of 7 × 106 virions per milliliter (Wölfel et 
al. 2020, cfr 3.1), Stadnytskyi et al. (2020) conclude that “… 1 min of loud speaking generates at least 
1,000 virion-containing droplet nuclei that remain airborne for more than 8 min”. These estimates 
assume an average value of the viral load, which is known (cfr 3.1) to vary significantly, reaching 
peaks more than two orders of magnitude larger than the average. Hence, the number of virion-
containing droplet nuclei released by loud speaking may be much larger than the above estimate. 
Moreover, the latter is conservative as the visualization technique was unable to detect the smallest 
fraction of the emitted droplets.    
 
 
 
4.3 A short digression: where and how droplets form 
 
We have ignored so far an aspect that affects the dynamics of the expiratory cloud only indirectly: 
where and how the cloud droplets form. This is a conceptually important issue, which poses a number 
of open fluid dynamics problems.  
 
Droplet formation arises from a number of processes dependent on a variety of factors. Firstly, the 
type of expiratory event: indeed, in the previous section, we have seen that different expiratory events 
(cough, sneeze, speech), are characterized by flow velocities and cloud composition that vary 
significantly. Secondly, the nature of internal boundaries, which may be moving boundaries. Thirdly, 
the interaction between the various fluids that are present in the respiratory system, play a crucial 
role. Indeed, as pointed out in sect. 2.2, the human airways, in the first 15 or so branches, are coated 
with a double liquid layer, with an outer mucus blanket superimposed on an inner serum layer (Fig. 
3). Serum is a Newtonian fluid, whilst mucus is a complex material with viscoelastic properties, a 
yield stress and thixotropic behavior (e.g. Powell et al. 1974). The thickness of the double layer is 
typically of the order of 5-10 µm in the larger airways.  
 
The liquid layer has a protective lubrication effect for the underlying cells as well as a trapping 
function for inhaled particles and dangerous microbes. The process of removal of the mucus layer 
plays a major defensive role for the lungs. Various mechanisms contribute to this process, some of 
them directly relevant for the generation of droplets expelled by expiratory events.  
  
Under ordinary conditions, two main mechanisms, namely gravitational clearance and ciliary 
propulsion, operate. In particular, ciliary propulsion has been the subject of several investigations 
starting from the early works of Blake (1971, 1975) and Ross and Corrsin (1974). These works are 
reviewed by Grotberg (1994). Essentially, each cilium beats with typical frequency around 1.5 Hz 
and its tip moves following an elliptical trajectory. Beating of different cilia are coordinated, such 
that their overall behavior leads to a wave perturbation, which propagates away from the mouth with 
wavelength of 30 µm, and drives mucus transport with velocity of 0.2 mm/s. The above physics 
justifies the framework used in some analytical models of ciliary propulsion where cilia are modeled 
as a continuous wall subject to the propagation of a traveling wave. Mucus clearance driven by ciliary 
propulsion is clearly a fairly slow process, which does not bear a direct relevance to the subject of the 
present review. 
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Fig. 16 Sketch illustrating the double liquid layer coating the human airways (after Grotberg, 1994). 
 
 
Droplet formation is associated with more violent events. Let us first note that, under normal 
conditions, the air speed in the trachea (an airway with diameter of 14 mm) is about 6.5 m/s (Ross et 
al. 1955), with peak measured value of the flow rate of 1 l/s. When a person coughs these values 
increase considerably: the peak flow rate reaches values above 7 l/s. With the same area of the cross 
section of trachea, this would imply air speeds around 46.5 m/s. These values increase further the 
need for taking into account that coughing is associated with the collapse of trachea with a consequent 
reduction of its diameter, which nearly halves. This would suggest that the air speed might reach 
peaks higher than 200 m/s and Reynolds numbers around 2 105 that would definitely be associated 
with a turbulent character of the air flow (Ross et al. 1955)! 
 
An air flow characterized by speeds of the order of tens of m/s is potentially able to destabilize the 
air-mucus interface through the well-known mechanism of Kelvin-Helmholtz hydrodynamic 
instability. Essentially, the air flow drives the development of shear stresses at the air-mucus interface 
which are sufficiently intense as to allow the growth of perturbations in the form of interfacial waves. 
Their amplitude can grow so much that the destabilized mucus undergoes a process of fragmentation 
and atomization into droplets, just like in breaking sea waves. The air flux then transforms into a two-
phase flux whereby mucus clearance is efficiently achieved.  
 
Only the initial phase of this complex process has been investigated so far. In particular, Moriarty 
and Grotberg (1999) performed a linear stability analysis of the motion of the double layer subject to 
an air flow and showed that instability occurs for values of the air speed strongly dependent on the 
value of the surface tension s at the air-mucus interface. The critical speed is about 5 m/s for a value 
of s equal to 10 dyn/cm. Needless to say, a linear stability analysis is unable to predict the structure 
of perturbations as they attain finite amplitudes. In order to achieve this goal, and then analyze the 
fragmentation process leading to droplet formation, numerical solutions of the fully nonlinear 
problem are needed. This is not an easy task, as fragmentation is associated with changes of the 
interface topology and the development of cusps when two interfaces reconnect (see the review of 
Scardovelli and Zaleski, 1999). This is an actively investigated area of research due to its relevance 
for many engineering applications, which will likely take advantage of the continuous increase of the 
computational power (Wang et al. 2016).  
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Fig. 17 Sketch illustrating the mechanism whereby the instability of the mucus layer lining an airway 
may lead to its occlusion (redrawn after Malashenko et al. 2009). 
 
 
Kelvin-Helmoltz instability is not the only mechanism that can lead to the fragmentation of the mucus 
layer. A second instability mechanism, the so-called Plateau-Rayleigh instability, may play an 
important role. This instability explains the experimental observation (Plateau, 1873) that a 
sufficiently long vertically falling stream of water breaks up into drops.  Rayleigh (1879) showed that 
instability arises from the effect of surface tension at the air-liquid interface. Neglecting viscous 
effects, the wavelength of the most unstable perturbations turn out to be equal to the circumference 
of the falling water column.  A similar mechanism may occur in the human airways: a small 
perturbation of the air-mucus interface may grow enough to let the interface reach the axis of the 
cylindrical conduit (Fig. 17). Under these conditions the airway is occluded (Romanò et al. 2019) and 
the occlusion may propagate until it disintegrates into small droplets (Malashenko et al. 2009).  
 
A further mechanism suggested by Malashenko et al. (2009) and Almstrand et al. (2010) is related to 
the rupture of menisci formed by the respiratory tract lining fluid at the level of the terminal 
bronchioles. These conduits have the size of the order of a millimeter, and it is known that their 
closure typically occurs during a progressive slow exhalation. The reopening of these peripheral 
airways during the following inspiration is thought to produce droplets of micron size due to the 
rupture of menisci. Modeling this process is a further open problem of difficult solution. 
  
Finally, as discussed in Sect. 3.2, the experimental observations of Scharfman et al. (2016) suggest 
that violent respiratory events generate clouds containing extended liquid structures (bags, sheets, 
filaments) whose fragmentation gives rise to droplet formation through a variety of mechanisms 
reviewed by Villermaux (2007). Modeling the fragmentation process in order to predict the size 
distribution of the resulting droplets represents an open challenge for the future research.    
 
 
 
 
 4.4 Open problems in the fluid dynamics of the two-phase flow generated by expiratory events 
 
The scenario arising from the experimental observations discussed in 4.2 opens to new challenging 
questions that still await adequate answers. 
 
The implementation of predictive models for the dynamics of the exhaled air emitted through 
respiratory events is of paramount importance for a deep comprehension of the long-range transport 
mechanisms responsible for the infection spread far from the emission source. 
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Some attempts in this direction appeared in the literature. In way of example, Bourouiba et al. (2014) 
provided a simple interpretation of their experimental results obtained in the laboratory by generating 
a two-phase flow consisting of fresh water with heavier particles dispersed in it, which was abruptly 
introduced, through a piston, into a tank containing salty water. A cloud of air was thus generated 
mimicking some of the features of the respiratory emissions. We mention in particular: the initial jet 
behavior of the exhaled air cloud, its transformation into a puff-thermal in the far field, and, finally, 
the evolution of the two-phase mixture induced both by the entrainment process and by the 
sedimentation of the particles transported by the cloud. The interpretation of Bourouiba et al. (2014) 
is based on a simple model which is, however, worth discussing. 
 
The cloud is treated as a volume that evolves while maintaining its self-similarity. Indicating by r the 
characteristic 'radius' of the cloud, the entrainment is described assuming that r=a s(t)  with a being 
the entrainment coefficient estimated from the experimental data and s(t) is the longitudinal 
coordinate of the cloud center of mass, defined along its trajectory. The initial jet behavior is therefore 
accounted for  by imposing the conservation of the momentum flux M0 ~ r r2 (ds/dt)2, a condition 
which, together with self-similarity, easily leads to the  power-law behavior s(t) ~ t1/2. The far field 
puff behavior is described  by imposing the constancy of the momentum of the cloud I0 ~ r r3 (ds/dt), 
which, exploiting the self-similarity, leads to the dependence: s(t) ~ t1/4. This result coincides with the 
power-law behavior originally obtained by Kovasznay et al. (1973). 
 

 

 
Fig. 18  Results of the experimental observations by Bourouiba et al. (2014) on  the trajectory of the 
cloud of exhaled air and its characteristic size (experiment II) compared with the predictions of a 
simple theoretical model. The results from the theoretical  model depend on the choice of the 
entrainment coefficients (reproduced by Bourouiba et al. 2014). 

 
 

Fig. 18a shows that the theoretical model accurately predicts the observed time dependence of s by 
estimating the entrainment coefficients from the corresponding dependence of r from s shown in Fig. 
18b.  The change in slope in the relation between r  and s indicates the transition from the jet to the 
puff regime. 
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The previous model ignores both the buoyancy effects and the multiphase nature of the flow. 
Bourouiba et al. (2014) proposed a further improvement maintaining the same hypothesis of self-
similarity but accounting for the buoyancy effect. This implies a progressive reduction of the cloud 
momentum. The latter reduction is taken into account during the evolution of the cloud only via 
particle sedimentation which is described in terms of a simple model because of the lack of detailed 
information on the carrier flow.  Evaporation, a further source of momentum reduction, is not 
accounted for in the model. The main conclusion of this work is summarized in the following 
statement: drops of size smaller than 50µm remain suspended in the cloud long enough to reach 
heights (4-6 m) that affect the ventilation ducts. 
 
The limitations of this model (and its conclusions) are clear. It basically ignores two  important 
aspects of the phenomenon: the turbulent character of the fluid motion and its  two-phase nature. As 
we have seen, the flow associated with respiratory emissions is indeed characterized by high values 
(~ 104) of the Reynolds number, the dimensionless parameter controlling the ability of a moving fluid 
to create fluctuations in its velocity field. These fluctuations characterize the turbulent character of 
the dynamic state of a fluid flow (Frisch 1995). Because of turbulence, the flow out of the mouth is 
extremely irregular, fluctuating, both in space and in time. Moreover, the mechanism of entrainment 
not only affects the buoyancy of the air cloud but also induces a reduction of its water vapor content.  
The ambient humidity is indeed smaller than the humidity of the exhaled air. 
 
It is worth emphasizing that we will assume that the environment is not saturated (i.e. its vapor 
pressure is smaller than the saturated vapor pressure) and that it has, initially, a temperature lower 
than the exhaled air from the mouth.  The hypothesis that the environment is not saturated, in cases 
where the temperature of the cloud (about 30-35 oC during expulsion) is comparable with that of the 
environment (for example about 25 oC), is equivalent to saying that the absolute humidity of the 
environment is sufficiently lower than that of the exhaled air. As time runs, due to the mixing of the 
two air masses, the temperature of the exhaled air is lowered and its absolute humidity is reduced.  
The first effect, by lowering the saturated vapor pressure, favors condensation, but it is immediately 
counteracted by the second, which favors the evaporation of the droplets. 
 
Let us now move back to turbulence as this feature characterizes also the mixing process which 
determines how the exhaled air, initially saturated of water vapor, dilutes with ambient air. This 
mechanism is intimately chaotic characterized by persistent fluctuations in the relative humidity field. 
This quantity certainly decays with time but its spatial structure in the decaying process  is highly 
nonuniform. Strong fluctuations with respect to the average relative humidity are present, a fact that 
justifies the term passive scalar turbulence to characterize the mixing process of the humidity field 
(Shraiman and Siggia 2000).    
 
The turbulent nature of the relative humidity field can have a dramatic effect on the fate of the 
evolution of saliva droplets. Cloud formation in the high atmosphere provides a large-scale example 
of the condensation/evaporation processes taking place in the air cloud exhaled from the mouth during 
coughing/sneezing/talking. The crucial role of turbulent fluctuations in the relative humidity field was 
isolated in 2005 in relation to its role in the cloud droplet growth by condensation (Celani et al. 2005). 
As a result of this study, turbulence turned out to be the key ingredient to explain the observed 
spectrum broadening of cloud droplets resulting at the end of the condensation stage. Due to this 
process of size broadening, the droplets can reach different terminal velocities, a fact that allows them 
to start the second phase of their growth dominated by collision and coalescence.  
 
Roughly speaking, a population of droplets all animated by the same terminal velocity would not 
allow the triggering of collisions and therefore there would be no way to form a raindrop. 
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For the saliva droplets, the growth by condensation is certainly not the key phenomenon at play, at 
least on average. On the contrary, the expelled droplets, in general, move in an under-saturated 
medium. In this framework, the interesting questions, still largely unanswered, concern the way and 
the rate at which these droplets evaporate. As we have seen in Sect. 3.2, the evaluation of these 
characteristics is, to date, done via mean field arguments, which either ignore the effects of turbulent 
fluctuations or describe them in an extremely simplified way (see for example Liu et al. 2017). On 
the contrary, by reversing the way of reasoning followed to understand what happens in a cloud in 
the upper atmosphere, one can easily imagine that the role of turbulence is very important to 
determine the fate of expiratory droplets during their evaporation stage. Droplets that remains longer 
in less under-saturated zones will evaporate slower than other droplets remaining in regions where 
the relative humidity is lower. 
 
The consequence of this way of reasoning is that the sizes of the expiratory droplets are expected to 
diversify before they evaporate completely. Since, as already seen in Sect. 3.2, the droplet 
sedimentation velocities are proportional to the square of their radii, the turbulent fluctuations 
responsible for the possible spectrum broadening of droplet sizes are expected to cause an analogous 
broadening of the spectrum of the droplet falling velocities. This would imply the appearance of 
droplets settling abnormally faster/slower with respect to the mean field theory predictions.  Cloud 
droplets, evaporating faster, reach faster the stage where they have reduced to their dry nuclei. They 
are thus expected to remain airborne for longer times, which increases the probability of long-range 
infection. 
 
As we have anticipated in 3.2, the consequence of the above considerations crucially depend on the 
answer to the following fundamental question: does the infective capacity of a droplet reduced to a 
dry nucleus remain unchanged? And for how long?  Achieving a deeper understanding of the role of 
turbulence in this process, dictating the fate of the droplet evaporation phase, is an issue of paramount 
importance. Understanding the process in detail, on a quantitative basis, is indeed a crucial 
prerequisite for the formulation of more realistic predictions, in relation to issues of social distancing 
and strategies of reduction of airborne virus transmission. A continuous interaction between experts 
of fluid dynamics and virologists is also a fundamental need. 
 
 
 
4.5  Role of natural and forced ventilation 
 
The air ejection mechanisms analyzed in the previous sections assumed a quiet environment with 
assigned thermodynamic properties (temperature and relative humidity for example).  The topic we 
are now dealing with, concerns the possible role of the environment on the spread of the infection in 
the presence of natural (Linden 1999), or forced ventilation.  
 
In order to estimate the probability of airborne transmission of an infectious agent in closed 
environments, subject to air changes, Riley et al (1978) developed what is now commonly called the 
Wells and Riley equation.  Without making explicit reference to the details of the analysis, this 
equation is a quantitative and rational formulation of what the intuition suggests. In order to reduce 
the probability of contagion it is convenient to stay as little as possible in an environment where there 
are infected subjects. Moreover, a reduction of the concentration of virus in the ambient air must be 
sought through an appreciable exchange of the ambient air. 
 
By adding information on: i) the emission rate of infected doses (q, expressed in quanta/s) injected 
into the air; and ii) the pulmonary ventilation required for each susceptible subject, expressed as 
volumetric flow rate, the formula is able to predict the number of new infections.  Note that a quantum 
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is defined as a dose of infection such that a susceptible exposed to it has a 63% probability of actually 
being infected (Rudnick and Milton 2003). 
In deriving their equation, Wells and Riley made two fundamental assumptions: (1) the environment 
is well mixed and, (2) in steady-state conditions. The first hypothesis implies that an infected particle 
has the same probability of being anywhere in the airspace of a building, regardless of when and 
where it was generated. 
 
Rudnick and Milton (2003) proposed a mathematical model that, using CO2 concentration as a 
biomarker of expelled air, does not require the assumption of steady-state conditions. The model 
assumes that the elimination of infective particles caused by filtration, sedimentation and other 
mechanisms is small compared with their removal by ventilation effects. Rudnick and Milton's model 
(2003) allows a more accurate prediction of the risk of infection in modern buildings where, for the 
sake of design and because of utility reasons, ventilation by outside air varies over time and often its 
flow cannot be accurately measured. The equation also allows for risk estimation in buildings and 
other indoor environments with poor air exchange from outside. The analysis presented by the authors 
show that increasing air exchange can prevent airborne transmission of some common respiratory 
infections and influenza, but has a limited impact on highly contagious diseases such as measles. 
 
The stochastic generalization of Wells and Riley's model proposed by Noakes and Sleigh (2009) 
overcomes the limitations associated with the hypothesis (1) made in the original model, namely the 
well-mixed condition. Indeed, this hypothesis is rarely verified even in indoor areas equipped with 
professional ventilation systems. It is not compatible with the spatial proximity that may exist 
between susceptible and infected people. In particular, the lack of mixing among different areas of a 
building affects the risk of infection in a space consisting of communicating rooms, such as hospital 
wards. 
 
These effects can be accounted for using computational fluid dynamics (CFD) techniques to simulate 
airflow and contaminant dispersion. The outcome of simulations allows one to identify regions of 
good and bad mixing and areas with high contaminant concentrations that would cause a higher risk 
to room occupants. An alternative approach is to use the so-called zonal or network ventilation 
systems, capable of estimating ventilation flows in large multi-connected spaces as whole buildings. 
Although such models are not able to resolve local details of air flows, they have proven useful in 
predicting air flows and contaminant transport in a wide range of applications, including natural 
ventilation (Asfour and Gadi 2007). 
 
Among the most comprehensive reviews investigating the link between ventilation in buildings and 
airborne infection transmission, the review by  Li et al. (2007) is worth summarizing. 
The authors selected the 40 best studies, based on quantitative analysis criteria, and set up a review 
committee composed of medical and engineering experts in the fields of microbiology, medicine, 
epidemiology, indoor air quality and building ventilation. Most of the members of the committee had 
experience in research on the 2003 SARS infection. The Committee systematically evaluated 40 
original studies through both individual and collegial evaluation. Ten of the 40 studies examined were 
considered conclusive in relation to the association between ventilation in buildings and airborne 
transmission of infection. According to the authors, there is substantial evidence demonstrating the 
association between ventilation, air flow in buildings and transmission/diffusion of infectious 
diseases such as tuberculosis, chickenpox, influenza, smallpox and SARS. On the contrary, again 
according to the authors, there are insufficient data to specify and quantify the minimum ventilation 
requirements in hospitals, schools, offices, houses and isolation rooms in relation to the spread of 
infectious diseases in air. 
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Ventilation systems are not only able to guarantee the exchange of air from outside but they can also 
change the relative humidity in the room. As far as the effect of this environmental parameter on viral 
transmission is concerned, combined with that of the ambient temperature, the literature does not 
draw firm conclusions (Wen et al 2020). Environmental conditions corresponding to low relative 
humidity associated with low temperature seem to favor the stability and transmission of certain 
influenza viruses such as respiratory syncytial virus, human rhinovirus and avian influenza virus 
(Derby et al 2017, Davis et al 2016, Ikäheimo 2016). On the contrary, it has been observed that for 
dust mite allergens and other virus types (Derby et al. 2017, Morawska 2006, Weber et al. 2008) such 
environmental conditions appear unfavorable to the spreading of the infection. 

In summary, the existing literature stresses the importance of indoor ventilation, but does not allow 
firm conclusions on its role valid for each type of virus. It therefore seems appropriate to continue 
collecting data in the field and developing increasingly sophisticated fluid-dynamic and infection 
models. Their ultimate goal is to identify the minimum requirements needed to define ventilation 
standards in hospitals, schools, offices, homes and isolation rooms that allow to minimize, in a 
sustainable way, the airborne spread of infectious diseases. Viral RNA can be much more stable than 
the infectious capacity of the virus so that the presence of traces of RNA does not necessarily mean 
risk of infection. Viral infectivity, on the other hand, is strongly affected by combined changes in 
temperature and relative humidity (see 3.1). 

 
 
 
5  Fluid dynamics of protection from airborne infection transmission 
 
The recent developments of epidemiological models to analyze the spread of pandemic from  
COVID-19 in Italy (Gatto et al. 2020) has confirmed the crucial role played by drastic lockdown 
measures, in order to reduce the risks of infection transmission. However, the recent lifting of 
lockdown aimed at allowing economic and social recovery, along with the heavy burden of patients 
and medical staff died from COVID-19, does call for an assessment of the actual effectiveness of the 
measures that people are urged to adopt in order to reduce the risk of infection transmission. Two of 
them, namely wearing masks and insuring social distancing, have been widely implemented 
worldwide. We wish to contribute to the above assessment analyzing some consequences of the fluid 
dynamics of contagion outlined in the previous sections.  
 
 
5.1 Measures for facial protection 
 
Masks are the commonly employed tool for facial protection. We are not interested, nor expert, on 
the details of the different types of masks available in the market. It suffices here to point out a few 
major distinct features of two most common typologies. 
 
Surgical masks (Fig. 19) are disposable tools that fit the face imperfectly. Individuals are expected to 
wear a surgical mask to prevent that infectious particles they release when coughing sneezing or 
simply speaking and breathing might affect other individuals in their neighborhood. The first masks 
systematically employed at the beginning of the 20th century, employed cotton gauze and were worn 
by surgeons to prevent infections of patients during surgical operations. Progressively the use of 
surgical masks has been extended and their manufacture has evolved.  
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Fig. 19 Surgical mask 
 
High protection masks (FFP, filtering facepiece particles) are tools designed to fit more tightly the 
human face.  Their function is to filter the inhaled air flux, such to protect the person wearing the 
mask from contamination due to airborne infective particles. A systematic use of such masks began 
at the beginning of the last century. They were used by miners exposed to contamination from gases 
and dusts, by soldiers threatened by chemical weapons and by firefighters exposed to smoke and 
carbon monoxide. They have become a common protective tool for health workers in hospitals. In 
Europe they encompass three classes of protection (FFP1, FFP2 and FPP3) associated with three 
levels of filtering efficiency: at least 80%, 94% and 99% of airborne particles up to 0,6 µm size, 
respectively (Fig. 20). Note, that in USA the equivalent of FFP2 masks is labeled N95. FFP masks 
may also be equipped with valves (Fig. 20). They make the use of masks more comfortable, as the 
valve allows one to expel the hot air and prevent its condensation. However, note that the valve 
radically changes the function of the mask, which no longer protects other people from infection 
transmitted by droplets exhaled by the individual wearing the mask!        
  
 

    
 

Fig. 20 High protection masks devoid of (left) or equipped with (right) expiration valves 
 
Two features of the above description should be noted:  

- firstly, high protection masks (devoid of valves) are believed to protect both the individual 
who wears them and people located nearby;  

- secondly, the parameter adopted to measure the effectiveness of these devices is their filtering 
capacity. Masks should be able to capture infective particles in a wide size interval, from less 
than a micron up to more than 100 µm, with exhaled fluxes falling in the interval 10 - 100 
l/min. Research has long focused on the identification of the most appropriate material to be 
used in order to achieve these goals. In other words, the choice of a fibrous material is based 
on its filtering capacity (Konda et al. 2020). The latter depends on the diameter and thickness 
of fibres, as well as on their porosity and, possibly, their electric charge. These parameters 
control the various physical mechanisms, namely diffusion, interception, impact and 
electrostatic attraction that determine the particle-fiber contact, whereby particles are removed 
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from the air flux. Typically, the dependence of the filtering efficiency on particle size exhibits 
a minimum for some particle size that define the ‘most dangerous’ particles. 

 
EU directives provide rules for testing the efficiency of different masks, identifying ‘mask efficiency 
with ‘filtering efficiency’ (Prather, Wang and Schooley 2020). No reference is made to the need to 
account for issues of fit and leakage, although   it has been ascertained that gaps (as caused by an 
improper fit of the mask) can result in sharp decrease in the filtration efficiency, over 60% according 
to Konda et al. (2020). This important aspect is discussed in detail below.  
 
 
Comparative evaluations of the efficiency of surgical versus FFP2 masks based on clinical data.   
 
We have reviewed a number of such evaluations available in the literature. However, we could not 
find conclusive evidence to support a generally agreed view: results appear to be strongly dependent 
on the type of virus and lead to a variety of different conclusions. Excerpta of such conclusions are 
reported below to support the latter statement.  
 
Lee et al. (2008) 
Most of the tested N95 respirators and surgical masks in this study were observed to perform at their 
worst against particles approximately between 0.04 and 0.2 µm, which includes the sizes of 
coronavirus and influenza virus. The tested N95 respirators provided about 8–12 times better 
protection than the surgical masks. 
 
Johnson et al. (2009) 
On the basis of these preliminary findings, both surgical and N95 masks appear equally effective in 
preventing influenza dissemination from patients with confirmed influenza. 
 
Smith et al. (2016) 
…..our meta-analysis showed that there were insufficient data to determine definitively whether N95 
respirators are superior to surgical masks in protecting health care workers against transmissible 
acute respiratory infections in clinical settings. 
 
Radonovich et al. (2019) 
Among outpatient health care personnel, N95 respirators vs medical masks as worn by participants 
in this trial resulted in no significant difference in the incidence of laboratory-confirmed influenza 
 
Long et al. (2020) 
The use of N95 respirators compared with surgical masks is not associated with a lower risk of 
laboratory-confirmed influenza. It suggests that N95 respirators should not be recommended for 
general public and non high-risk medical staff those are not in close contact with influenza patients 
or suspected patients. 
 
Bae et al. (2020) 
In conclusion, both surgical and cotton masks seem to be ineffective in preventing the dissemination 
of SARS–CoV-2 from the coughs of patients with COVID-19 to the environment and external mask 
surface. 
 
Leung et al. (2020) 
Surgical face masks significantly reduced detection of influenza virus RNA in respiratory droplets 
and coronavirus RNA in aerosols, with a trend toward reduced detection of coronavirus RNA in 
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respiratory droplets. Our results indicate that surgical face masks could prevent transmission of 
human coronaviruses and influenza viruses from symptomatic individuals. 
 
The last study deserves special attention for the large number of patients involved in the experiments. 
From the initial group of patients examined (3.363), 246 were selected and their breathing exhalations 
were analyzed. 122 (124) of them did not (did) wear a surgical mask. Tests were made to ascertain 
the number of virus copies for each sample in nasal swabs, pharyngeal swabs, larger and smaller 
droplets exhaled when breathing.  Results for patients wearing a surgical mask were compared with 
those for patients who did not wear a mask. Comparison is reported in graphical form in Fig. 21. 
 

 
Fig. 21  Efficiency of surgical masks in reducing the number of respiratory viruses exhaled in droplets 
of different sizes by symptomatic patients suffering from coronavirus (a), influenza (b) or rhinovirus 
(c). The figure plots the number of virus copies for each sample. Samples were collected from nasal 
swabs (red), pharyngeal swabs (blue), exhaled droplets (d > 5 µm) collected for 30 min from patients 
that did not wear (dark green) or wore (light green) a surgical mask and smaller droplets (d < 5 µm) 
collected for 30 min (brown no mask, orange with mask) (reproduced from Leung et al. 2020).   
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Results clearly suggest that the protective effect of wearing a surgical mask is strongly dependent on 
the size of the infected particle and the type of virus. The effect is strong for coronavirus (droplets of 
any size) and influenza (droplets of size higher than 5 µm). It is weak for rhinovirus (droplets of any 
size) and influenza (droplets of size lower than 5 µm). 
 
 
Evaluation of the protective efficiency of respiratory masks through visualizations of exhaled flux.  
  
Recently, Tang et al. (2009) employed sophisticated tools for the visualization of the exhaled cloud 
with its droplet load to analyze the exhalations of individuals who wore respiratory masks. This was 
an important step forward as it allowed one to investigate the real efficiency of various types of 
personal protective equipment, accounting for an effect usually overlooked, namely the role played 
by exhalation leakage due to an improper fit of the mask. Experiments employed Schlieren image 
technique, along with a high speed video recording of the sequence of images and a PIV anemometer. 
Results are of great interest.  
 

    
Fig. 22  Schlieren images of two volunteers. The left one coughs without any mask protection (a), 
wearing a surgical mask (b) and finally a FFP2 mask (c). The flow direction is inclined 308° 
downward in (a). It has both vertical components (downward and upward) and lateral components 
that bypass the surgical mask in (b). The best fit of a FFP2 mask reduces the bypass flow but it 
increases the flux released through the mask. However, its weak speed limits the region affected by 
exhalations to the immediate neighborhood of the volunteer (reproduced from Tang et al. 2009).     
 
 
Fig. 22 provides a lateral view of two volunteers. One of them coughs. In (a) the absence of any facial 
protection implies that the exhaled cloud, weakly inclined downward with respect to the horizontal, 
extends its influence through the whole region spanned by the image towards the second volunteer. 
Protection achieved wearing a surgical mask (b) educes the anterior flux and redirects it towards the 
edges of the mask, where it leaks through the mask-face gap. The better fit provided by a FFP2 mask 
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lets the exhaled volume increase its pressure. As a result, the anterior flux through the mask also 
increases whilst the flux able to bypass the mask laterally is reduced. Moreover, as the speed of the 
exhaled flow is low, the latter is trapped into the weak human thermal plume that is known (e.g. Li et 
al. 2018) to be generated by the higher temperature of a human subject relative to the ambient air.  
  
The study of Tang et al. (2009) has been recently extended by Viola et al. (2020), confirming the 
above observations and quantifying speed and direction of fluxes. Moreover, these authors have also 
considered the case of normal or intense breathing, the latter aimed at mimicking the effects of 
physical exercise. Seven different protective devices were analyzed, including a surgical and a FFP2 
mask. Results may be summarized as follows:  
 
-- The cloud exhaled in the absence of any protective device has features similar to those reported by  
Tang et al. (2009) and Borouiba et al. (2014). 
 
- The exhalation flux determined by cough is damped by a factor larger than 63% if FFP1 or FFP2 
masks are worn. Moreover, the cloud reaches distances lower than 1/2 m or 1/4 m, respectively.  If 
the mask does not fit the face perfectly, bypass fluxes are generated. However, they deviate upward 
moving little in the horizontal direction. On the contrary, wearing surgical masks or homemade 
masks, bypass fluxes are generated which disperse infected droplets in a region spanning various 
meters in a neighborhood of the source. Dispersion occurs in various directions, including the 
direction opposite to the main flux. This occurs both with intense breathing and with coughing.  
 
The main conclusion of this study is that the efficiency of respiratory masks should not be evaluated 
only measuring their particle filtering capacity, but accounting also for the generation of secondary 
flows leaking through the gaps left at the edges of the mask due to its imperfect fit. This 
notwithstanding, the ability of masks to intercept most of the viral load should not be underestimated 
as surgical experience has demonstrated. The latter statement appears to be substantiated by a most 
recent assessment, funded by WHO, of data and metadata (Chu et al. 2020). This study aimed at 
estimating the interpersonal distance needed to avoid the transmission of infections among people 
that either wore or did not wear masks or eye protection devices. The main conclusion of this work 
concerns the case of  2647 empirical observations which suggest that social distancing, along with 
the use of masks and eye protection devices can provide a significant reduction of the risk of infection. 
This applies, in particular, to the case of N95 masks (the equivalent of FFP2 masks, cfr. 5.1), rather 
than to ordinary surgical masks. Eye protection is less effective to reduce the risk of infection from  
SARS-CoV-2, though it has been ascertained that it provides some marginal benefits.   
 
Chu et al. (2020) state that their results must be used with caution as they would need an appropriate 
series of randomized trials to formally check their actual validity. The main results of this study are 
summarized in Fig. 23, where the absolute risk of infection is plotted versus the distance infected-
susceptible for various reference conditions (baseline risk) (note that the absolute risk is the larger 
between the pooling risk ratios and the adjusted odds ratios in Chu et al. 2020). The maximum 
distance in the plot is 3 m, though no actual data were available for this condition and the value was 
extrapolated from the randomized meta-analysis. As for the use of N95 masks or equivalent devices, 
their use by susceptibles exposed to infection decreases the risk of infection, corresponding to the 
shift from the high baseline to the intermediate baseline for infection. Finally, the comparative 
analyses of Chu et al. (2020) suggest that  the  efficiency of N95 is significantly higher than that of 
other types of masks, though this conclusion is in contrast with results of Bartoszko et al. (2020) 
based on four randomized trials. 
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Fig. 23 Variation of the absolute risk of infection from SARS-CoV-2 and SARS-CoV with distance 
infected-susceptible for given reference risks (baseline risk). The shift from a condition of high risk 
(high baseline risk) to an intermediate one, corresponding to the use of N95 masks or equivalent ones 
(reproduced from Chu et al. 2020). 
 
 
 
5.2  Fluid dynamics of social distancing 
 
Let us close our discussion of the measures undertaken to protect the population from airborne 
infection transmission, with few notes concerning the well known issue of so called ‘social 
distancing’. This issue stems from the guidelines released by WHO for the protection of health 
workers  (World Health Organization 2020), where one reads:  
 

“Staff should be trained to protect themselves by maintaining a distance of at least 1 metre 
between themselves and travellers, at all times, (“social distancing”). Staff should also 
encourage travellers to maintain a more than 1 metre distance between themselves while 
waiting to cross the point of entry, including when completing entry forms.”  

 
The implicit assumption in the above statement is that a one meter distance would insure protection 
from infection associated with the dispersion of airborne infective droplets. 
 
The state of the art that we have reviewed in this paper does not provide any scientific substantiation 
of this assumption. Similar conclusions emerge from a recent study (Bahl et al. 2020), where the 
current knowledge has been assessed. As illustrated in Fig. 24, numerical models and experimental 
observations of the most significant contributions provide a wide spectrum of predictions for the 
distance affected by respiratory exhalations, which invariably exceeds one meter.  
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Fig. 24 Prediction of the distance from the source reached by expiratory exhalations according to 
mathematical or numerical models (M), experimental observations (E) or testing on patients (H):   
(reproduced from Bahl et al. 2020) 
 
 
The conclusion of the study reads:  
 

“We note that although the studies used very different methodologies and should be interpreted 
cautiously, they still confirm that the spatial separation limit of 1 meter (≈3 feet) prescribed for 
droplet precautions, and associated recommendations for staff at ports of entry [WHO, 2020], 
are not based on current scientific evidence”.  

 
This is a reasonable statement both when it recommends  caution in adopting conclusions of studies 
whose theoretical foundations are sometimes questionable, as noted in the present review, and when 
it underlines the lack of scientific basis of WHO guidelines.   
 
This notwithstanding, it is obvious that the probability of contagion decreases with distance. A 
quantitative estimate of this effect is given in Fig. 23. It shows that, in the absence of any protection, 
the risk of infection halves at one meter distance and is still significant at  2 m distance. A strong risk 
reduction is obtained at a distance of several meters. Alternatively, adopting a suitable facial 
protection, the risk decreases strongly at much smaller distances. In other words, social distancing 
according to WHO guidelines, remains a necessary, though not sufficient, measure to reduce the 
pandemic spread.  
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6   Implications for the development of epidemiological models 
 
 
In the context of the so-called non-pharmacological measures to contain the contagion, a special 
role belongs to large-scale measures of social distancing, including: personal protection equipment 
(World Health Organization, 2020); temporary closure of schools and universities; lockdown 
extended to public events or mass gatherings. These measures are obviously related to the general 
theme of this Review, i.e. the biological fluid dynamics relevant to the spread of infections. Several 
open issues in that field concern the connection between the fundamental transport mechanisms of 
viruses, and their survival in the environment. Others pertain the shedding of significant viral loads. 
One wonders what are the connections of the fundamental transport mechanisms that are necessary 
to the possible contagion and the macroscopic schemes that are needed to describe the strength and 
the diffusion of the infection at the community level, that is, epidemiological models of any kind 
(Anderson and May, 2008). 
 
The COVID-19 spread is often described, with different variants, by hierarchical compartmental 
models (systems of coupled ordinary differential equations), whose parameter estimation is carried 
out in a Bayesian framework. The dynamics of symptomatic, pre-symptomatic, or asymptomatic) 
after a latency time generated by the exposure to an infection source. The infection rate λ (at times 
termed force of the infection) is generally the product of the number of contacts between susceptible 
and infected individuals per unit of time, 𝑐 [1/T], and the probability of transmission of the disease 
per each contact, β. This parameter subsumes the effects of the biological fluid dynamics of the 
contagion dealt with here (e.g. Lipsitch et al. 2003, Tang et al. 2020). Current epidemiological models 
may be predictive about the expected number of contacts per unit time. However, the probability of 
transmission per contact, 𝛽, cannot be determined from first principles to date.  
 
Large-scale processes like those involved in tracking and modeling human mobility and the 
containment of infections predictably affect the value of 𝑐. Values λ may be estimated by robust 
Bayesian methods via epidemiological modeling contrasting data e.g. on case fatality counts 
unambiguously attributed to COVID-19 (Forsberg White and Pagano 2008, Flaxman et al. 2020, 
Gatto et al. 2020). Once data are contrasted by computations, and the latters prove capable of 
reproducing, say, spatial and temporal patterns within accuracy, the evolution of the force of the 
infection may be estimated reliably (Forsberg White et al. 2009). In this manner it is possible to 
identify the role of the transmission mechanisms that were in place at the time of the estimation, like 
e.g. in the latency period of a patient's infection. Similarly, substantial undocumented asymptomatic 
infections that facilitate the rapid spread of the SARS-CoV2 coronavirus may be inferred indirectly 
(Li et al. 2020). Backward schemes are also commonly used to determine the effective reproduction 
index, by retrospectively considering the distribution of delays between the manifestation of 
symptoms and death (Forsberg White and Pagano, 2007, Wallinga and Lipsitch, 2008). The empirical 
tracing of human mobility, i.e. the use of human mobility fluxes as data and not as a model to be 
tuned via the bulk of all other noise sources, is now possible on very large numbers via technologically 
advanced tools, for example based on the tracking of mobile phones (e.g. Chinazzi et al. 2020, Ferretti 
et al. 2020, Pepe et al. 2020). This yields insightful establishments of one component of the force of 
the infection, the statistics of the number of contacts between susceptible and infected individuals per 
unit time,	𝑐.  
  
An open problem of great interest and relevance is the theoretical prediction of the probability 
distributions of 𝛽  (the probability of transmission per contact), in particular as a function of the nature 
and severity of the symptoms of the infected donor. What is currently missing is an assessment of the 
conditions that determine: the distribution of near/far contacts in space and time (see 3.2); and the 
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physical and biological characteristics of the particles emitted by the respiratory functions or simply 
speech (see 4.2). 
 
Experimental and empirical evidence on the progression of COVID-19 with reference to the viral 
load of the infected varieties could usefully define an important condition for the emission models 
(and then the probability of contagion). A relevant empirical study has provided temporal profiles of 
the viral load in samples of oropharyngeal saliva from patients infected with SARS-CoV-2 (To et al. 
2020). The result of the limited inference of other known acute respiratory syndromes proves 
remarkable. It suggests unmitigated prudence in the formulation of hypotheses usable for forecasts 
or scenarios. In fact, despite the limited evidence available to date, COVID-19 always seems to show 
the maximum viral load at onset of the infection, thus justifying the rapid spread of the epidemic. A 
key parameter for determining the value of the distribution of 𝛽 could therefore be the age of the 
infection in the infected agents that emit the saliva drops conveyed from the mouth to the surrounding 
environment within a puff of saturated air volume. The relative proportion of the various ages of 
infections might be calculated from compartmental models (Liu et al. 2020, Zou et al. 2020), thus 
somewhat configuring some kind of predictor-corrector method for determining the effective 
transmission rate. It is also useful to note that samples suited to the evaluation of viral loads are not 
invasive, and are usually acceptable to patients and healthcare personnel or groups at risk (e.g. RSA 
guests), natural attractors of systematic detection (Flaxman et al. 2020). Other studies in samples 
taken from the upper respiratory tract of infected patients in the nose and mouth (Zou et al. 2020) 
document the cycle of viral load from onset to remission, providing a first outline of the boundary 
conditions for an emission model (see 3 and 4) (Fig. 22). The observations contained therein are 
relevant to an important epidemiological determinant: the viral load measured in asymptomatic 
patients is similar to that of patients with severe symptoms, suggesting the great potential contribution 
to the transmission of the epidemic by patients with no symptoms. This must be rooted in deeper 
explanations than available to date, possibly based on fluid dynamic transmission mechanisms, and 
biological mechanisms of pathogen survival in the environment.  
 
 

 
 
Fig. 22 Viral load detected in nasal swabs obtained from patients infected with SARS-CoV. This is 
an example of direct measurement of the viral load cycle, here expressed in units of measure specific 
of test system using RT-PCR (𝐶' value), immaterial to the evaluation of the cycle [days] that is of 
interest here  (redrawn from Zou et al. 2020).    
 
 
Finally, the probability of transmission must describe any seasonality effect, at times assumed in 
analogy to that documented for other coronaviruses (Kissler et al. 2020). Seasonality may be relevant 
to interpret bio-fluid dynamics of the processes that occur at the drop-air interface in different climatic 
conditions (3.3). It should be noted that the actual viral load transmitted with the infection, which has 
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a significant impact on the course and case fatality counts of the disease (Cyranoski 2020), is 
determined by the boundary condition (the initial concentration of the emission. This is a function, 
today unknown, of the viral load of the type illustrated in Fig. 6) and of the dynamics of the diffusion 
process for large and small droplets (see 3). The relationship between the infectious load actually 
transmitted and the probability of contagion for each contact remains an open problem, potentially 
quite different from that of the toxicological thresholds that set a value below which the effect does 
not occur. If the SARS-CoV-2 infection threshold were not dose-dependent, as for many micro- and 
macro-parasitic diseases (Anderson and May 2008), the problem of dilution and opportunities for 
spreading the virus would have to be reviewed with the progress of empirical and experimental 
evidence. In analogy with problems of seasonality and of the actual duration of acquired immunity, 
which may or may not depend on the strength of the contracted infection. 
 
 
 
7   Discussion and conclusions  
 
A number of open questions emerge from the present review.  In our view, they might underpin our 
current inability to predict infection transmission and its prevention. They may be summarized by six 
questions, whose rationale and relevance are discussed below.   
 
Q1: Would a virus-carrying droplet undergoing evaporation (possibly shrinking down to its dry 
nucleus) maintain its infectivity?  
This question is related to the issue of stability of the virus within environments characterized by 
different turbulence levels and relative humidity. The relevant literature is reviewed in Section 3.1.  
Incidentally, given the relevance of this problem and the continuous attention it has attracted for 
decades, it seems somewhat surprising that no conclusive assessment exists in the literature about the 
fundamental determinants of the persistence of virus infectivity in the environment.  The hypothesis 
put forth in a WHO report (Sobsey and Meschke 2003) supports the view that, in general, viruses that 
are coated by a lipid membrane would retain their infectivity longer at low relative humidity. 
Uncoated viruses would instead be more stable   in humid environments. However, this view is 
challenged by a number of counterexamples. This point has been made, in particular, by Yang and 
Marr (2012). They analyzed empirical evidence and the validity of previous hypotheses aimed at 
interpreting the correlation between virus stability and relative humidity in the environment. Among 
the relevant factors, one counts:  
 

- removal of water molecules from the pericapsid, leading to virus inactivation;  
 

- damage to viruses dividing on aerosol surfaces due to surface tension or shear stress 
effects;  

 
- toxic effects of dissolved salts in droplets, possibly enhanced by the increase of their 

concentration owing to evaporation;  
 

- conformation changes of surface glycoproteins present in coated viruses may be driven by 
pH variations of aerosols undergoing evaporation and compromise their infectivity. 

  
A reference framework seems far from acknowledged. Sorting out the individual role and the 
collective effects of the various mechanisms remains an interdisciplinary research challenge. As 
documented in our Review, the latter open question naturally leads to following further open 
questions.  
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Q2: is it possible to associate a probability distribution to the size of droplets dispersed in the two-
phase flow exhaled by the various types of respiratory events?  
The large uncertainty associated with such an association (see 4.1) is certainly due in part to the 
different degree of sophistication in the instrumentation used by the different studies mentioned 
therein.  However, this is only part of the explanation, and possibly not the most important one. For 
example, the visualizations by Scharfman et al. (2016) have shown that, at least in the case of the 
most violent respiratory events, the hypothesis that exhalations consists of a the two-phase dispersion 
of droplets in a humid air stream is not entirely correct. Droplets form and evolve from complex liquid 
structures via fragmentation mechanisms whose modeling is still a major research challenge. Section 
4.3 has highlighted that this issue is linked to a third open problem. 
 
Q3: How does the exhaled two-phase mixture form? 
The state of knowledge on this matter is still in its infancy. It is limited to the broad identification of 
the possible instability mechanisms of the mucus-air interface within the respiratory airways. Strong 
nonlinearities of the instabilities arising therein have not been modeled. They pose challenging 
problems of computational fluid dynamics, currently at the forefront of research on the fragmentation 
of liquid structures into droplets.  
 
Q4: How does the jet-puff cloud evolve in the near and far fields? How is this process affected by the 
presence/absence of secondary circulation induced by natural or forced ventilation?   
Recent progress in the advanced visualization of droplet clouds (Section 4.2) still await proper 
interpretation in the light of suitable turbulence models. These models must be capable of reproducing 
the time evolution of the velocity, temperature and relative humidity fields, jointly with settling 
velocity and evaporation of droplets  (see 4.4). It is argued that only the availability of these tools, 
along with a solution to question Q1, will yield a comprehensive framework of the mechanics of 
contagion transmission and therefore of its possible prevention. In particular, we must assess whether 
forced ventilation may yield an effective danger to infection spreading, e.g. via possible 
contamination of aeration conduits, and if so to what degree. Note, in this respect, that significant 
traces of viral RNA have been detected in the inlets of aeration conduits in a hospital where SARS-
CoV-2 patients were being treated (Santarpia et al. 2020).  
 
 
Q5: Can we offer sure indications to decision makers about the efficacy of personal protection 
equipment and measures?  
The brief review outlined in Section 5 suggests that the WHO guidelines currently adopted for the 
measures of social distancing needs to be revisited. It emerges clearly that the currently suggested 
social distancing would require, to be truly effective, the joint use of facial protection tools able to 
significantly reduce the spreading distance of respiratory exhalations. Furthermore, facial protection 
devices must be maintained in place when speaking, as speaking is associated with an increase of 
exhalations. This issue has been reviewed in Section 4.2, where it has been emphasized that a verbal 
exchange is often an occasion of short-distance interaction among asymptomatic infected individuals 
and susceptible ones. In the absence of facial protection, current knowledge is unable to give binding 
indications on how to revise current protection criteria. An assessment will require that the open 
problems mentioned above be satisfactorily addressed. 
 
Q6: What experimental and theoretical validation may underpin a predictive definition of the 
probability of infection per single contact?   
The synthesis provided in this context could only yield a list of open issues, moving from 
measurements of the effective distancing per contact between an infected individual and a susceptible 
one. Evidence gathered on the viral load in nasal and throat cavities potentially determining the 
infective character of exhaled droplets will have to be used in order to provide boundary and initial 
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conditions for the biological fluid dynamics model of pathogen release and transport processes. The 
current state of knowledge may provide reasonable schemes for the probability of contact under 
diverse conditions, but not on the probability of infection per contact. Together, these factors 
determine the force of the infection, which is currently estimated (say in Bayesian frameworks) from 
noisy data rather than from solid predictions based on fundamental principles.  
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