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Fisica. — Sulla quantizzazione del gas perfeito monoatomico.
Nota di Exrico Ferui, presentata dal Socio Garsasso.

L. Nella termodinamica classica si prende come calore specifico a vo-
Jume costante di un gas perfetto monoatomico (riterendosi a una sola mo-
Tecola) ¢ = 3 k/2. I chiaro perd che se si vuole, anche per un gas ideale,
ammettere la validita del principio di Nernst, bisogna ritenere che la pre-
cedente espressione di ¢ sia soltanto una approssimazione per temperature
elevate, e che in realtd ¢ tenda a zero per T = o0, in modo che si possa
estendere fino allo zero assoluto I integrale esprimente il valore dell’ entropia
senza I’ indeterminazione della costante. E per rendersi conto del come possa
avvenire una tale variazione di ¢, ¢ necessario ammettere che anche i moti
del gas perfetto debbano essere quantizzati. Si capisce poi come una tale
quantizzazione, oltre che sul contenuto di energia del gas, avrd anche una
influenza sopra la sua equazione di stato, dando cosi origine ai cosi detti
fenomeni di degenerazione del gas perfetto per basse temperature.

Lo scopo di questo lavoro ¢ di esporre un metodo per effettuare la
quantizzazione del gas perfetto che, a noi pare, sia il pitt possibile indipen-
dente da ipotesi non giustificate sopra il comportamento statistico delle mo-
Jecole del gas. ,

Recentemente sono stati fatti numerosi tentativi di arrivare a stabilire
T’ equazione di stato del gas perfetto™®. Le formule date dai vari autori e
la nostra, differiscono tra di loro, e dalla equazione di stato classica, sol-
tanto per temperature molto basse e per densitd assai elevate; disgrazia-
tamente sono queste le stesse circostanze nelle quali sono maggiormente
importanti anche le deviazioni delle leggi dei gas reali da quelle dei gas
perfetti; e siccome, in condizioni comodamente realizzabili sperimentalmente,
le deviazioni dalla equazione di stato pV = kT dovute alla degenerazione
del gas, pur non essendo affatto trascurabili, sono sempre alquanto pili pic-
cole di quelle dovute all’essere il gas reale e non perfetto, le prime sono
state fino ad ora mascherate da queste ultime; pur non essendo affatto
escluso che, con una conoscenza pil approfondita_delle forze che agiscono
tra le molecole di un gas reale, si possa, in un avvenire pill 0 meno pros-
simo, separare tra di loro le due deviazioni, arrivando cosi a decidere spe-
rimentalmente tra le diverse teorie della degenerazione dei gas perfetti.

(1) Vedi p. e. A. BinsTeIN, «Sitzber. d. Pr. Akad. d. Wiss.», 22 (1924), p. 261!
23 (1925), pp. 3, 18. M. Pranck, «Sitzber. d. Pr. Akad. d. Wiss.», 23 (1925), p- 49
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2. Per poter effettuare la quantizzazione del moto delle molecole di
un gas perfetto & necessario mettersi in condizioni tali da poter applicare al
loro movimento le regole di Sommerfeld; e questo pud naturalmente farsi
in infiniti modi che, del resto, conducono tutti allo stesso risultato. Si pud
p. e. supporre il gas racchiuso in un recipiente parallelepipedo a pareti ela-
stiche, quantizzando il moto, triplamente periodico, della molecola che rim-
balza tra le sei faccie del recipiente; o, pili generalmente, si possono as-
soggettare le molecole a un qualsiasi sistema di forze tale che il loro moto
venga ad essere periodico e possa quindi essere quantizzato. L’ipotesi che
il gas sia perfetto ci autorizza in tutti questi casi a trascurare le forze agenti
tra le molecole, per modo che il moto meccanico di ciascuna di esse viene
a svolgersi come se le altre non esistessero. Si puo tuttavia riconoscere che
la semplice quantizzazione, con le regole di Sommerfeld, del moto delle
molecole, considerate come completamente indipendenti le une dalle altre,
non ¢ sufficiente per ottenere dei risultati corretti; in quanto che, pur tro-
vandosi cosi un calore specifico che tende a zero per T = o0, si ha perd
che il suo valore, oltre che dalla temperatura e dalla densitd, viene anche
a dipendere dalla quantitd totale del gas, e tende, per qualunque tempera-
tura, al limite 3 k/2 quando, pur restando costante la densitd, la quantita
totale del gas tende all’infinito. Appare dunque necessario ammettere che
occorra qualche complemento alle regole di Sommerfeld, per il calcolo di
sistemi che, come il nostro, contengono degli elementi non distinguibili tra
di loro (.

Per avere un suggerimento circa 'ipotesi pit plausibile da farsi, con-
viene che esaminiamo come vanno le cose in altri sistemi che, al pari del-
nostro gas perfetto, contengono degli elementi indistinguibili; e precisa-
mente vogliamo esaminare il comportamento degli atomi piti pesanti del-
I’idrogeno, i quali tutti contengono pilt di un elettrone. Se consideriamo
le parti profonde di un atomo pesante, siamo in condizioni tali che le forze
agenti tra gli elettroni sono molto piccole in confronto di quelle esercitate:
dal nucleo. In queste circostanze la applicazione pura e semplice delle regole
di Sommerfeld condurrebbe a prevedere che, nello stato normale dell’atomo,
un numero considerevole di elettroni dovesse trovarsi in una orbita di quanto
totale 1. In realtd si osserva invece che l'anello K ¢ gia saturato quando
contiene due elettroni, e parimenti ’anello L si satura quando contiene
8 elettroni, etc.... Questo fatto & stato interpretato da Stoner ), e in modo
ancora pil preciso da Pauli ), al modo seguente: caratterizziamo una orbita.
elettronica possibile in un atomo complesso mediante 4 numeri quanticiy
n, k, j, m, che hanno risp. i significati di quanto totale, quanto azimutale,.
quanto interno e quanto magnetico. Date le diseguaglianze alle quali deb-

(1) E. Fermy, «N. C.» 1 (1924), p. 145.

(2) E. C. StoNnER, «Phil. Mag.», 48 (1924), p. 719.
(3) W. PauLr, «Zs. f. Phys.», 31 (1925), p. 765.
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bono soddisfare questi 4 numeri, si trova che, per # — I, esistono solo due
terne di valori di &, j, m; per m =2, ne esistono 8, etc.... Per rendersi
conto del fatto precedentemente osservato, basta dunque ammettere che nel-
I”atomo non possano esistere due elettroni le cui orbite siano caratterizzate
dagli stessi numeri quantici; bisogna in altre parole ammettere che una
orbita elettronica sia gid «occupata » quando contiene un solo elettrone.

3. Ci proponiamo ora di ricercare se una ipotesi simile non possa dare
dei buoni risultati anche nel problema della quantizzazione del gas perfetto:
ammetteremo dunque che nel nostro gas ci possa essere al massimo una
molecola il cui movimento sia caratterizzato da certi numeri quantici, e
faremo vedere che questa ipotesi conduce a una teoria perfettamente con-
seguente della quantizzazione del gas perfetto, e che in particolare rende
ragione della prevista diminuzione del calore specifico per basse tempera-
ture, e conduce al valore esatto per la costante dell’ entropia del gas perfetto.

Riservandoci di pubblicare, in una prossima occasione, i dettagli ma-
tematici della presente teoria, ci limitiamo in questa nota ad esporre i prin-
cipi del metodo seguito, e i risultati.

Dobbiamo anzitutto mettere il nostro gas in condizioni tali che il moto
delle sue molecole sia quantizzabile. Come si ¢ visto questo puo farsi in
infiniti modi; siccome pero il risultato ¢ indipendente dal modo particolare
che si adotta, noi sceglieremo quello che ¢ pit comodo per il calcolo; e
precisamente ammetteremo che sulle nostre molecole agisca una attrazione
verso un punto fisso O, di intensitd proporzionale alla distanza r della mo-
lecola da O; per modo che ogni molecola verrd a costituire un oscillatore
armonico spaziale, di cui indichiamo con v la frequenza. L’ orbita della mo-
lecola sard caratterizzata dai suoi tre numeri quantici s, , s, , sy, che sono
legati alla sua energia per mezzo della relazione

(1) w="hy(5; + 5+ 5) = hvs.

L’energia di una molecola pud dunque prendere tutti i valori multipli
interi di hv, ed il valore shv pud essere preso in Q; = ?(s +1)(s+ 2)

modi.

L’ energia zero pud dunque realizzarsi in un modo solo, I’energia /v
in 3 modi, I’energia .2/v in 6 modi, etc.... Per rendersi conto della in-
fluenza della ipotesi da noi fatta, che a determinati numeri quantici non
possa corrispondere piti di una molecola, consideriamo il caso estremo
di avere N molecole allo zero assoluto. A questa temperatura il gas deve
trovarsi nello stato di energia minima. Se dunque non ci fosse nessuna
limitazione al numero delle molecole che possono avere una certa energia,
tutte le molecole si troverebbero nello stato di energia zero, e tuttl e tre
1 numeri quantici di ciascuna di esse sarebbero nulli, Invece, per la nostra




——

G) P(x)-—-x}(1+2_%x_'%+...) . p(x):%'/ -

— 148

ipotesi, non ci pud essere piti di una molecola con tutti e tre i numeri
quantici nulli; se ¢ quindi N = 1, ’unica molecola occuperd il posto di
energia zero; se & invece N = 4, una delle molecole occupera il posto di
energia zero, e le altre tre i tre posti di energia hv; se ¢ N = 10, una
delle molecole occuperd il posto di energia zero, altre tre i tre posti di
energia hv, e le sei rimanenti i sei posti di energia 2hv, etc....

Supponiamo ora di dover distribuire tra le nostre N molecole 'energia
complessiva W = Ehv (E = numero intero); e indichiamo con N: = Qs
il numero delle molecole di energia shv. Si trova facilmente che i valori
pitt probabili delle Ns sono

(2) Ny =« Qs/(eﬁs -+ OC)

dove o ¢ B sono delle costanti dipendenti da W e da N. Per trovare la
relazione tra queste costanti e la temperatura, osserviamo che, per effetto
della attrazione verso O, la densitd del nostro gas sard una funzione di 7,
che deve tendere a zero per 7 = oo . Per conseguenza, per 7 = co debbono
cessare i fenomeni di degenerazione, e in particolare la distribuzione delle
velocita, facilmente deducibile da (2), deve trasformarsi nella legge di
Maxwell. Si trova cosi che deve essere

€)) - B=hv/kT.

Siamo ora in grado di dedurre da (2) la funzione n (L)d L, che ci
rappresenta, per un dato valore di 7, la densita delle molecole di energia
compresa tra L ed L 4 d L (Analogo della legge di Maxwell), e da questa
possiamo dedurre I’ energia cinetica media L delle molecole a distanza 7,
la quale ¢ funzione, oltre che della temperatura, anche della densitd 7. Si

trova precisamente

B L e P
) Le i P( e )

Dove con P (x), si ¢ indicata una funzione, di definizione analitica un
po’ complicata, che, secondo che x ¢ molto grande o molto piccolo, si puo
calcolare con le formule asintotiche

37/

om i 5[4
9 3

Per dedurre da (4) U equazione di stato applichiamo la relazione del
viriale. Si trova allora che la pressione ¢ data da

bt

© p=3aT=Ump (22nED).
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Al limite per temperature elevate, cio¢ per piccola.degenerazione, l'equa-
zione di stato prende dunque la forma

I B n

@ p=mnkT I+;z<1;c'ka)3/,—2+

La pressione risulta dunque maggiore di quella prevista dalla equazione
di stato classica. Per un gas perfetto del peso atomico dell’elio, alla tem-
peratura di s° assoluti, e alla pressione di 10 atmosfere la differenza sa-
rebbe del 15°/.

Da (4) e (5) si pud anche dedurre I’espressione del calore specifico
per basse temperature. Si trova

IRl oy I
) cv——-‘/—l-%f—— mk T oo

h* n2is

Parimenti possiamo trovare il valore assoluto dell’ entropia. Effettuando
i calcoli si trova, per alte temperature,

(2 b m)?/Z kS/‘/Z gS,/2

TI .1
(9) S:n/O TvdL:n;%IOgT—logPJrlOg— -

che coincide col valore dell’entropia dato da Tetrode e da Stern.

Fisica. — Sulla durata di emissione delle radiazioni monoero-
matiche ¢ la vita media degli stati stazionari. Nota di A. PONTRE-
MoL1 ¢ presentata dal Socio CorsiNoO.

La frequenza della radiazione monocromatica emessa da un atomo nel
passaggio tra due stati stazionari risulta, nella teoria di Bohr, da conside-
razioni puramente energetiche, né & ancora possibile determinare le carat-
teristiche cinematiche del moto dell’elettrone, che irradia, durante il tragitto
tra due orbite quantizzate.

Analoghe difficolty si incontrano nello studio teorico della durata di
tale percorso; Einstein, nel suo classico lavoro sulla radiazione del corpo
nero, ritiene detto tempo trascurabile rispetto alla vita media dell’atomo
nello stato stazionario di partenza: durata che pud ricavarsi® dalla in-
tensita delle righe di assorbimento e che, per atomi in condizioni di nor-
male eccitazione (non in stati metastabili), ¢ dell’ordine di 10—¢ — 107% se-

(1) Lavoro eseguito neli’Istituto di Fisica Complementare della R. Universita di
Milano. :

(2) TormaN, «Proc. Nat. Acad. of Sciences», X, p. 85; 1924.




